Table de Matiére

Introduction GENerale...........ueoeiveisseessnecsnecsnecsenseissnisssisssesssesssecssecssesssasssssssses 1A%
1. Evolution des applications d'entreprise : du JEE traditionnel aux frameworks modernes............co.cvu... v
2. Présentation de Spring et Spring Boot Vv
2.1. Le framework Spring : une fondation pour la productivité.............cceeeuerieciiiieriinieiieeee e A%
2.2. Spring Boot : I'accélérateur de déVeloppement.............coiuiiieiiiieriiiieieee e VII
Chapitre 1. Préparation de I'Environnement de Développement 1
1.1 Configuration Systéme Requise et ChoixTechnologiques 1
1.2 Installation des Outils Nécessaires 1
JDK (Java Development Kit).........cccoiiieriiiieriiiieiieeeieetete ettt etesaeeeesaeesaesaeessesseessesseessesseessensesssesseessesseenss 1
IDE (Environnement de Développement INtEGIE).......cc.oiiuiriiiiiiiiieieeee e 2
Maven/Gradle : Outils de Construction (BUild)..........ccceeeueiiriieriieiiicieesiee st ees 2
1.3 Configuration et Validation de I'Environnement. 2
Configuration des Variables CLES..........ccoiiiiiiiiiieieie ettt ettt e s et eneeneesneenseenean 2
Vérification de I'Intégrité de 1'TNStallation..........c.ccvevieiieiieiieiecieieecee ettt sea e be e se e 2
1.4 Création et Importation du Projet Fondateur 3
Utilisation de SPring INItIALIZE......c..coueoieiiiiiiiieneneees ettt ettt ettt be b b sa s 3
Structure de Projetet ImportationdanSECHPSE.......cc.vivieieiieieiiciecie ettt ae e s eeeas 4
Chapitre 2. Fondamentaux de Spring Framework 5
2.1 Philosophie et principes de conception de Spring 5
Les problématiques réS0IUES PAr SPIINE........ccuieuiiriieiertieieetteee et erte st e et ee st e et esteesee et eseeseeeneesseeeesseesesneensesneens 5
Architecture MOdUIAITE A SPIING.......ccvecuieieiiieierie et eterte et et ete et e st eaesteessesseesesseessesseessesssensenssenseessensennes 7
Comment les MOdUIES $’ATTICULENL.oouiriiriiieieeeeeee ettt sttt sttt ne e eaes 9
Bénéfices CONCTEtS & Cas A USAZE.eoveeeeriieiieiieie ettt ettt et et et et e st e et e saeeeeseeetesseentesneenseeseenseeneenseenes 9
Quelques bonnes pratiques architecturales liées a la philoSophie SPring...........cceeeevveriiriienesieenescieneeieseenns 10
2.2. Inversion de Contrdle (IoC) 11
Concept théorique : QU est-Ce QUE I'IOC 2.....viiuiiiiieiieieciieieeteete ettt ettt e beesbeesaeseessesseesseessenseenseans 11
Le Conteneur Spring : ApPliCatiONCONIEXL.......cc.ecviiieiiiieiieereieerteeteseesteeteseesteesesaeesseessessaesseessessaesseessessees 11
CYCle de VIE dES DEANS.......eiieieiieiietieie ettt ettt ettt ettt et e et e s et e et e e st e bt en b e st eteenteeneeteens 12
Configuration Spring : XML, Annotations, Java COnfig.........cccccevieiiiniiriiniininiininicniencenesesese e 13
ComMPAraiSON SYMENETIQUE. ... eecverererteeieitertierteetestteteetesteesseetesseesseassesseessesssesseessesssesseessesssesseessesssesseessesssessens 15
2.3 Injection de Dépendances (DI) 15
Principe de 12 DI €t SES AVANTAZES.ccueeieriieiiieie ittt ettt eee st ettt e saee bt e e saeesteeneesae e bt eneesaeenaesmeeseeeeeeneenees 15
Types d’injection : constructeur, Setter et fIeld...........coiviriririiininirre e 15
Bonnes pratiqUes A’ INJECTION.iiieriieierteeteeieeteste et esteeteseeesteesbesseesseesaesseesseensessaesseessesssesseessesssesseensesses 17
3.4 Autowiring 17
Meécanismes d’ Autowiring (@Autowired, @QUALITIET).......cccuiruieiiiiieiieieeieeee e 17
RESOIULION dES AMDBIGUILES.....c..eutetiiititirtitert ettt sttt sttt b et ebe et ettt eseensennens 18
@Component, @Service,(@Repository,@CONLIOLLET.cooiiiiiiee e 18
Chapitre 3. Spring Boot : Simplification du Développement 20
3.1 Qu'est-ce que Spring Boot ? 20

3.2 Explorez Votre Premiére Application Spring Boot

3.3 Auto-Configuration

3.4 Les bases de Spring Boot

Chapitre 4. Développement d'Applications Web avec Spring MVC

4.1 Architecture MVC et Contexte Spring Web

4.2 Controllers

4.3 Création d'APIs RESTful

4.4 Gestion des Réponses

Chapitre 5. Persistance des Données avec Spring Data JPA
5.1 C’est quoi Spring Data ?
5.2 Introduction a JPA et Hibernate

SPIING BOOT STATTETS.cuviitieieieieiieeieteeteste ettt et e st et e st essesteesseeseesseesaesseeseenseesseseassesseessesseassessesssenseensenseenss
Spring Boot AULOCONTIGUIATION.c..eeuietieiietieiiertt ettt ettt ettt ettt et e bt eeesbeesbesbe et e sbe et e sbeenteeaeenes
Gestion de Configuration EIEZANTE.c..vvueveeiveeeeeeeeeeeeeeeeeseeeee e eeee s
SPIING BOOT ACLUALOT ... coviiiieieiietietesteet et et e it ete st etesteesaesteessesseessasseesseesaesseessesseessessesseessesssessesssessesssens
Support des Serveurs EMDarqUeS.cc.ooiiiiiiiriieeeee ettt sttt st

Créer Le Projet Avec SPring INItIALIZE.........ccuioiiiiiieieieeieeeeste ettt ettt re e sreesaesaeesse e essesssensesseenns
D5 0] (o) 21 (o) G L (]] A SRS
La Classe Point d’Entrée de I’ APPLICAtION.ccverviiieriieieeieieeeeteeeete sttt ste e esse st esaesseessesseesaesseenees
Création d’un Fat JAR avec le Spring Boot Maven PIugin........c..coevieiiniiniiiiniiicce e

Principe du “Convention Over Configuration™.............c.ccverieriiriierieeeenieeeesieseessessessessesseessesseessesseessesseeses
Explorer La Puissance de @Conditional..............coieiiiiiiiiieiieiee ettt
Conditionnement Basé Sur Les Propriétés SYSIEME........cevueeieririeriiriereeieseeiesteete et eteseeesaesseessessnessesnnens
Les Annotations @Conditional intégrées de Spring BOOt.........ccocveviiiiiriiiiiiieicceeteeeete et

Comment L’ Autoconfiguration Fonctionne dans Spring BOOt...........ccooiriirieiinieieneeeeeeeeeee e

LOZEINE .ttt e et b et e b e et h e e ekt e et bt e a et e bt et bt et e bt e nbeesaenbeeetenbeens
Externalisation des Propriétés de Configuration............cocevuevuerierieieieiecninencnieeteseseeseetet ettt

DEVELOPET TOOIS. . cuuieiiiieiieiieieett ettt sttt e sttt et eete e b e et e e b e e st esbeeseessessaessesssesseessessaessanseessaseessenseassenseeneas

Le Mod¢le MVC : Principes et ReSponsabilités............ccvivuiiieriiiieniieieniieiesie et eee e eee e sre s eseeseeeeenns
Intégration de Spring Web MVC et ROle du SErVEUL.........cooiiiiiieieeeeeeeee e

@RestController VS @CONLIOLLT.coouiiiiiiiiet et sttt st
MappPing des REQUELES.......coouiiuieiieiieiieee ettt sttt e e et e et et e s st eneeeseeneesseenseeseenseeneensenneenes
Gestion des Parametres et du Path............coccoiiiiiiiiiiiiicc e

PrinCIPEs REST ...ttt ettt ettt sttt ettt et ebt bt bbb
HTTP Methods €t COAES A€ STATUL.......oeiiviiiiiie ettt e e et e e eae e e eeaaeessaaeesenneeesnseeesnneeeenns
Annotations de GeStion deS DOMMEES...........oviiiiueiiiiiiiiiiiiee ettt ettt e et e e e et e e e e s eesraeeessennnaeees

ResponseEntity et Personnalisation des REPONSES..........covuiiuiiiiiiiiiiiiiiieieecec e

4.5 Validation des Données

Bean Validation (JSR=380).......cciiiiiiiiieiiieiesiieiestt ettt ettt sae et stesaestessaesteesbesseessesseessesseessessnessesssessenssans
ANNOLAtIONS A€ ValIAAtION.uiiiiiiiiiiiiii ettt e e e e et e e e e e eatae e e e s eentaseeessennateeeesesnaaeeeeessannes
Gestion des Erreurs de VAIIAAtiON.oooueiiiiiieieeee et eeaee et eetee e eeaeeeeeaneeeeneeeeaneeennneean

ORM : CONCEPLS CF AVANTAZES. ...c..eeuvieeentieiieteeiienteetterteettesteeite bt et e steeueesseeatesteeseesbeeeesbeentesbeensesbeenteeseensesneenes
JPA comme spécification, Hibernate comme implémentation..........c..coueevevrererieneninenenieneieneeeeeeeeennens
Configuration de 1a base de dONNEES...........ccvevvieiiriiiieiieie ettt essaenseeeeenns

Ajout de méthodes dans une interface de rEPOSILOTY.......c.evieriireierieriieieeteeete ettt ebeeteste e e ebessaeseessensnens 55

L0031 1o] 1313 T) T O OO PS PRSPPI 59
Chapitre 6. Sécurisation des Applications avec Spring Security 60
6.1 Qu’est ce que Spring Security? 60

6.2 Comment Spring Boot simplifie ’utilisation de Spring Security? 61

6.3 Fonctionnement général 61

6.4 Concepts Fondamentaux de Spring Security 62
SECULILY FIIter CRAIN.ciiiiiiiiieeee ettt ettt et et a et e st esee e e s st e sseenseeneesaeenneeneas 62
AUTNENEITICATION. ..ttt eb et b et b e bt e st e st e st et e st e st et e st et e st e b et et entenaens 64
PaSSWOTAENCOTETS........eouiiiiiiiiie ettt ettt et et st e bt et sb e bt e saeenae e e nae 65
OAULNZ @8 JWT ...ttt ettt et est et e st e st e st e st e st essessessessessessassessessanbesesesessensesessensensenns 65
AAUEOTISALION. ...ttt ettt b e et b et e bt e bt b e e bt e bt eb e eb e e bt eb e eb e eb e eaees e e st e st eatentententententensentensenee 65
Sécurisation des URLS et des MEthOAES..........ooouiiiiiiiiiieieiee ettt 66
Protection contre 1es attaqUes COUTANEES.uevuirruerieriieieetestieteetesseetesesesseesesssesseesesssesseesesssesseensesssessenns 67

GESTION @S SESSIOMS. ... eiuteuteteteterteeteete st ete bt ete et e ebeeteebe e bt eue et e eseesteseeaeeseententententeneensenbensensensessebebesseasenbenaens 68

6.5 Intégration avec Spring Boot 68

6.6 Bonnes pratiques 70
Chapitre 7. Tests et Qualité du Code 71
7.1 Tests des Applications Spring Boot 71

7.2 Tests avec des Implémentations Mock 73

7.3 Tester des tranches de I’application a I’aide des annotations @*Test 75
Tester les Controleurs Spring MVC Avec @WEbMVCTESE........ccuveiieieiieieeieseeie ettt seeens 76

Tester les Composants de la Couche de Persistance Avec @DatalpaTest et @JdbcTest.........cceevevreerennenne. 87
Chapitre 8. Etude de Cas Pratique:Application Compléte 81
8.1 Cahier des charges 81

8.2 Conception 81

8.3 Implémentation pas a pas 84

8.4 Tests de 'application 99
Tests des controleurs RESTttt sttt st 101

8.5 SYNLHESE TECRNIQUE.......eeiiiieiieie ettt et e st et et et e st e s st e st enseeste st ensesseanseensesseenseensenseenseensensennes 104
Chapitre 9. Conclusion et Perspectives 105
9.1 Récapitulatif des compétences acquises 105

9.2 Bonnes pratiques de développement 105

9.3 Ressources pour aller plus loin 106

9.4 Evolution de I’écosystéme Spring 106

Annexes 107
Annexe A : Annotations SPring 1€S PIUS COUTANTES.........ccueruieeiirieeiiertieiietieteeteeaeereesteseessesseesseessesseessesseessesseeses 107

Annexe B : Bibliographie €t TEEIENCES.cc.evuiiiuieieitieieee ettt ettt et see et e seeeseesaeeneenneas 109

Introduction Générale

Dans 1'écosystéme dynamique du développement d'entreprise Java, la complexité croissante des
applications a rendu indispensable la transition de 'approche traditionnelle JEE vers des frameworks plus
agiles et productifs. Dans ce contexte, Spring Boot s'est imposé comme une solution incontournable pour
simplifier et accélérer le cycle de développement, devenant ainsi I'un des frameworks les plus influents et
adoptés du marché.

Ce rapport a pour vocation de servir de guide pratique et complet a la maitrise de Spring Boot.

L'objectif principal est de démystifier ce framework en proposant un parcours d'apprentissage progressif,
partant des fondations de I'écosystéme Spring et de ses concepts clés, pour aboutir a la mise en ceuvre
d'une application robuste et conforme aux architectures d'entreprise modernes. Ainsi, ce document vise a
démontrer par la pratique comment Spring Boot facilite la création d'applications performantes en
s'appuyant sur les standards JEE tout en réduisant drastiquement la configuration requise.

Il s'adresse a tout développeur ou étudiant possédant des connaissances fondamentales en

programmation orientée objet avec Java, ainsi qu'une familiarité avec les principes de base de
l'architecture JEE, et désireux de moderniser leurs compétences.

1. Evolution des applications d'entreprise : du JEE traditionnel
aux frameworks modernes

Au début des années 2000, le paysage du développement Java d'entreprise était structuré autour de la
plateforme J2EE (plus tard Java EE). Bien qu'elle ait établi un standard robuste, sa mise en ceuvre était
souvent synonyme de complexité, de configurations XML lourdes et d'une forte dépendance a des
serveurs d'applications monolithiques. Cette rigidité constituait un frein notable a la productivité et a
l'agilité.

En réponse directe a ces défis, le framework Spring a été introduit en 2003. Il a provoqué une
véritable rupture en proposant une alternative plus légére, fondée sur les principes d'Inversion de Contrdle
(IoC) et d'Injection de Dépendances (DI). En offrant une alternative plus simple aux EJB (Enterprise
JavaBeans), Spring a rapidement gagné en popularité, redonnant de la flexibilité aux développeurs.

Cette quéte de simplification a franchi une nouvelle étape décisive avec l'arrivée de Spring Boot.
En adoptant une philosophie radicale de "convention plutot que configuration", Spring Boot élimine la
majorité du paramétrage initial grace a des mécanismes d'auto-configuration et I'intégration de serveurs
embarqués. Cette approche a rendu possible le développement rapide d'applications autonomes,
notamment pour les architectures microservices. Parallélement, Java EE a poursuivi sa propre
modernisation en devenant Jakarta EE sous 1'égide de la Fondation Eclipse, avec une orientation plus
marquée vers le cloud, illustrant une tendance de fond de I'écosystéme vers plus de 1égéreté et de rapidité.

v

1-1 Frise chronologique. JEE et Spring

CHRONOLOGIE : JAVA EE VS SPRING BOOT

L'évolution des deux principaux écosystémes pour le développement d'applications d'entreprise

Ure héstoire de standards et
dinnovelion dans 'écosyatéme Java.

en Java.

1 STANDARD J2EE

« J2EE s'impose comme standard.

+ Spécifications complétes mais
complexes.

« Forte dépendance aux serveurs

r

« Spring gagne en popularité.
« Apprécié pour sa flexibilité.

" MONTEE EN PUISSANCE

» J2EE estrenommé Java EE.

Java EE transféré & la Fondation Eclipse.
Renommé Jakarta EE.

Vise des cycles de publication plus
rapides et une orientation cloud-native.

d'application.

;ﬁrlava EE

m“

L'ARRIVEE DE SPRING REVOLUTION SPRING BOOT

« Introduction du framework Spring.
« Approche plus simple et 1égére
(loC/DI).

années 2000

Extension du framework Spring.

Auto-configuration et serveurs

« Alternative aux EJB lourds. embarqués. 4
« Idéal pour les microservices.
€ spring spring
boot

2.

Présentation de Spring et Spring Boot

2.1.

Convention plutdt que configuration.

v

JAKARTA EE

= Spring Boot domine pour
le cloud-native.

« Jakarta EE reste viable
pour les grandes
applications d'entreprise.

+ Emergence de frameworks
comme Quarkus.

(]

Le framework Spring : une fondation pour la productivité

Lancé en 2003, le framework Spring a émergé comme une réponse innovante a la complexité de J2EE.
Ses principes fondateurs, I'Inversion de Controle (IoC) et I'Injection de Dépendances (DI), ont
révolutionné le développement Java en permettant de créer des applications faiblement couplées,
modulaires et aisément testables. Au-dela de son conteneur [oC (Spring Core), Spring s'est développé en
un écosystéme vaste et modulaire, offrant une multitude de projets spécialisés pour adresser les diverses

facettes des applications d'entreprise :

+%* Spring Core : Le coeur du framework, fournissant le conteneur IoC/DI, la gestion des beans et

'accés aux ressources.

+%* Spring MVC / Spring WebFlux : Pour le développement d'applications web et d'APIs RESTful,
avec une approche basée sur les contrdleurs pour le premier, et une approche réactive
non-bloquante pour le second.

+* Spring Data : Simplifie I'accés aux données avec une prise en charge uniforme de diverses
technologies de persistance, qu'il s'agisse de bases de données relationnelles (JPA, JDBC) ou
NoSQL (MongoDB, Redis, etc.), en générant les implémentations des dépots de données
(repositories).

+* Spring Security : Un framework puissant et flexible pour l'authentification, I'autorisation et la
protection des applications.

D'autres projets comme Spring Batch (traitement par lots), Spring Cloud (développement de

microservices cloud-native) ou Spring Integration (intégration d'applications) complétent cet écosysteme
riche.

1-2 Diagramme. Vue d'ensemble de l'écosysteme Spring et du réle de Spring Boot

5 DEVELOPPEMENT WER

Spring MVC Spring WebFlux
LS .—'l
g ACCES MU DONNEES
Spring Data
—_—
(1 O st ¥
sEcunm
S ‘ O
Ecosystéme
Spring Spring Security
Ty CLOUD |
o
l&mpldia .
l'urtiligation Spr'ing Cloud
Application
m;;' 32 MTEGRATION

o
Spring Integration

Spring Batch

ﬁpPIicaIion
Spring préte

VI

2.2. Spring Boot : I'accélérateur de développement

Cependant, a mesure que I'écosystéme Spring s'est enrichi, la configuration nécessaire pour orchestrer ses
différents modules pouvait elle-méme devenir complexe. C'est pour répondre a ce défi que Spring Boot a été
créé. 1l ne s'agit pas d'une réécriture de Spring, mais d'une surcouche intelligente qui adopte une approche
opiniatre (opinionated) basée sur la "convention plutéot que configuration'. Ses innovations majeures
incluent :

+s* L'auto-configuration : Spring Boot inspecte le classpath et configure automatiquement
l'application avec des parameétres par défaut pertinents.

+%* Les dépendances "starters" : Des descripteurs de dépendances simplifiés qui regroupent tout le
nécessaire pour une fonctionnalité donnée (ex: spring-boot-starter-web).

+* Les serveurs applicatifs embarqués : La possibilité de créer des applications autonomes (fichiers

.jar exécutables) avec un serveur comme Tomcat ou Netty intégré, éliminant le besoin de

déploiements externes complexes.

2.3. Positionnement dans I'écosysteme JEE/Jakarta EE

Il est essentiel de comprendre que Spring et Spring Boot ne sont pas des adversaires de 1'écosysteme JEE,
mais plutot des facilitateurs qui en exploitent les standards. Loin de réinventer la roue, Spring Boot s'appuie
sur des spécifications standard comme JPA (via son implémentation Hibernate) pour la persistance ou I'API
Servlet pour les applications web. Il agit comme une surcouche pragmatique et productive qui utilise la
puissance des standards Java tout en masquant leur complexité inhérente, permettant ainsi aux développeurs
de se concentrer quasi exclusivement sur la logique métier.

3. Structure du document

Afin de proposer un parcours d'apprentissage structuré et progressif, ce rapport est organisé en une suite
de chapitres logiques, allant de la configuration initiale a la réalisation d'un projet complet, puis a
l'exploration de concepts avancés.

3 Chapitre 2 : Préparation de I'Environnement de Développement. Ce chapitre initial se veut un
guide purement pratique pour installer et configurer tous les outils indispensables (JDK, IDE,
Maven/Gradle) et pour prendre en main I'outil Spring Initializr afin de créer la structure d'un

premier projet.

3 Chapitres 3 et 4 : Des Fondamentaux de Spring a la Simplicité de Spring Boot. Ces deux
chapitres posent les fondations théoriques. Nous y aborderons d'abord les principes fondateurs du
framework Spring — I'Inversion de Contréle (IoC) et I'Injection de Dépendances (DI) — avant de
découvrir comment Spring Boot vient simplifier radicalement cet écosystéme grace a ses
mécanismes d'auto-configuration et ses dépendances "starters”.

+3* Chapitres 5, 6 et 7 : Construction des couches applicatives. Le cceur du rapport se concentre sur
le développement des différentes couches d'une application moderne. Nous verrons comment

créer une API REST avec Spring MVC, gérer la persistance des données avec Spring Data JPA, et
enfin, comment sécuriser I'application avec Spring Security.

VII

J
0‘0

VIII

Chapitre 8 : Tests et Qualité du Code. La qualité étant un pilier du développement logiciel, ce
chapitre est entiérement consacré aux stratégies de test. Il couvre a la fois les tests unitaires avec des
outils comme JUnit et Mockito, et les tests d'intégration facilités par I'écosystéme Spring.

Chapitre 9 : Etude de Cas Pratique: Application Compléte. Ce chapitre majeur constitue la synthése
de toutes les connaissances acquises. Il guidera le lecteur dans la réalisation, de A a Z, d’'une
application fonctionnelle, depuis le cahier des charges et la conception jusqu'a I'implémentation et
au déploiement.

Chapitres 10 et 11 : Concepts Avancés et Conclusion. Pour ceux qui souhaitent approfondir le sujet,
un chapitre optionnel aborde des concepts avancés comme la gestion des exceptions ou le
monitoring. Enfin, la conclusion récapitulera les compétences clés acquises et offrira des ressources
pour continuer a progresser.

Chapitre 1. Préparation de I'Environnement
de Développement

Ce chapitre est dédié¢ a la mise en place de I'environnement de travail technique qui servira de socle au
développement de la solution logicielle en utilisant l'architecture JEE (Jakarta EE) et le framework Spring
Boot. Il détaille les outils utilisés, les versions requises et la configuration initiale de I'environnement.

1.1 Configuration Systeme Requise et Choix Technologiques

Voici un tableau qui récapitule les exigences minimales pour la versionSpring Boot 4.0.0 et les choix
technologiques adoptés.

Version Minimale ate, y =
Composant S Choix Adopté Raole
Java Development Kit Foumnit 'environnement de compilation et
al? ra 17 TEERE
(JDK) laval dava 17(ETH) d'exécution du code.
Spring Framework 7.0.1 Tx Ceeur du développement d'applications.

Outil de Construction ||Maven 3.63 / Gradle|| Au choix (Maven ||Gestion des dépendances et automatisation des
(Build) 814 ou Gradle) tiches de construction.

Eclipse IDE for |[Environnement de codage, de débogage et de

L B Enterprise Java |[déploiement.

Figure 1-1. Tableau des spécifications techniques

1.2 Installation des Outils Nécessaires

L'installation des outils fondamentaux :

JDK (Java Development Kit)

Le JDK est essentiel car il contient le compilateur Java, I'environnement d'exécution (JRE) et les outils
nécessaires pour développer des applications Java.

e Version Recommandée : Java 17 (LTS) est la version minimale et privilégiée pour sa stabilité et
son support optimal par Spring Boot 4.0.0.

e Téléchargement et Installation : L'installation est réalisée a partir d'un fournisseur comme
Adoptium(Eclipse Temurin), via le téléchargement de l'installeur correspondant au systéme
d'exploitation de l'utilisateur.

IDE (Environnement de Développement Intégré)

L'IDE est 'outil central qui facilite 1'écriture, la compilation, le débogage et le déploiement du code.

e ChoixAdopté:EclipseIDEforEnterpriseJavaandWebDevelopers

e Justification: Eclipse est sélectionné pour son intégration approfondie dans I'écosystéme JEE et
pour la disponibilité de ses extensions dédiées a Spring (Spring Tools).

e Installation: La version adéquate est téléchargée depuis le site officiel d'Eclipse.

Maven/Gradle : Outils de Construction (Build)

Ces outils de gestion de dépendances et de construction sont indispensables pour gérer les librairies
requises par Spring Boot et automatiser les taches de build (compilation, tests, packaging).

e VersionsSupportées :
o Maven :3.6.3 ou version ultérieure.
o Gradle : 8.x (8.14+) et 9.x.
e Installation: L'intégration de ces outils est assurée par I'DE Eclipse et I'outil de génération de
projet (Spring Initializr), ce qui élimine le besoin d'une installation manuelle complexe pour la
plupart des environnements.

1.3 Configuration et Validation de I'Environnement

La configuration de l'environnement de développement repose sur 1'établissement des variables systeéme
nécessaires pour garantir que l'outil de construction (Maven/Gradle) et I'IDE (Eclipse) utilisent la version
requise du JDK (Java 17).

Configuration des Variables Clés

e JAVA HOME : La variable a ét¢ définie pour pointer précisément vers le répertoire d'installation
de la version Java 17 (LTS). Cette étape assure la compatibilité avec Spring Boot 4.0.0.

e PATH : Le chemin vers le sous-répertoire bin du JDK a été ajouté au PATH pour permettre
l'acces direct aux exécutables Java depuis la console.

Vérification de I'Intégrité de I'Installation

L'intégrité de I'installation est validée par des commandes de vérification de version dans le terminal,
qui confirment que la version de Java et 'outil de build sont correctement référencés.

e PourJava:

java -version

e Pour I’outil de build:

:\Users\PC-HP> mvn -v C:\Users\PC-HP> gradle -v

1.4 Création et Importation du Projet Fondateur

La création du projet est réalisée a l'aide de l'outil standard de I'écosystéme Spring, suivi de son
importation dans I'IDE.

Utilisation de Spring Initializr

Spring Initializr est le générateur de projets officiel, garantissant une structure de base propre et
conforme aux normes.

e Processus de Génération :
1. Acces a start.spring.io.

() spring initializr

Figure 1-2.Spring initializr
2. Sélection du projet Maven, java et version de spring boot.

Project Language
O Gradle - Groavy ® Jav O Ketlin QO Groovy
O Gradle - Kotlin @ 1

Spring Boot
O 4.00(SNAPSHOT) O 400(RC2) O 359(SNAPSHOT) @
O 3413 (SNAPSHOT) O 3412

Figure 1-3. Choix des versions, projet.

3. Définition des métadonnées (Group, Artifact, Version de Spring Boot/Java 17).

Project Metadata

SGroup com.app

Artifact gestion.produits

Name gestion.produits
Description Demo project for Spring Boot
Package name com.app.gestion.produits
Packaging o Jar O War
Configuration @ Properties O YAML
Java O 25 O 21 @ 17

Figure 1-4. Choix des métadonnées.

4. Sélection des dépendances initiales (comme Spring Web pour la création d'API, Spring
Data JPA pour la persistance, etc).

Dependencies [ADD DEPENDENCIES... CTR

Spring Web
Build web, including RESTful, applications using Spring MVC. Uses Apache Tomcat
as the default embedded container.

Spring Data JPA [E50)
Persist data in SOL stores with Java Persistence API using Spring Data and
Hibernate.

Figure 1-5. Ajout des dépendances.

5. Téléchargement du projet compressé au format ZIP.

eclipse

Figure 1-6.Eclipse

Structure de Projet et Importation dans Eclipse

Leprojetgénéréestimportédansl' IDEpourlancer le développement.

e Structure Clé : La structure inclut le fichier de configuration de build (pom.xml ou build.gradle),

les répertoires src/main/java pour le code source et src/main/resources pour les fichiers de
configuration(commeapplication.properties).

e Importation dans Eclipse : Leprojet est importé via "File -> Import... -> Existing
Maven/Gradle Projects".

= CetteméthodepermetaEclipse d'indexer automatiquement le projet et de télécharger
touteslesdépendancesrequises, finalisant la préparation de l'environnement de
développement.

- Exemple apres I’importation :

i B gestion.produits [boot]
(® src/main/java
(® sr¢/main/resources
B src/test/java

> B\ JRE System Library [JavaSE-17]

B\ Maven Dependencies
(= src
(= target
] HELP.md
= mvnw
g mvnw.cmd

H pom.xml

Figure 1-7. Structure Initiale du Projet sur Eclipse

Chapitre 2. Fondamentaux de Spring
Framework

2.1 Philosophie et principes de conception de Spring

Les problématiques résolues par Spring
Spring est né a la fin des années 2000 pour répondre aux limites et douleurs du développement Java
«classique ». Voici les problémes principaux et la fagon dont Spring les adresse.

1. Couplage fort entre classes

Probléme : Dans les applications traditionnelles, les classes créent et gérent elles-mémes leurs dépendances
(new Servicelmpl() partout). Résultat : difficile d’isoler une classe pour les tests, changement
d’implémentation délicat.

Solution Spring :

e Inversion deContréle(IoC) et Injection de Dépendances (DI) : Spring crée et assemble les
objets (beans) pour toi, et injecte les dépendances dans les composants.

e Effet : on obtient des classes plus petites, axées sur la logique métier, et facilement testables via
des mocks.

Exemple simple (avant / apreés)
Avant (couplage) :

public class OrderController {
private PaymentService paymentService = new StripePaymentService();

Apres (DI via constructeur) :

public class OrderController {

private final PaymentService paymentService;
public OrderController(PaymentService paymentService) {
this.paymentService = paymentService;

2. Boilerplate et gestion
Probléme : Beaucoup de code répétitif pour créer des connexions JDBC, configurer transactions, gérer
ressources, etc.

Solution Spring :

e Abstractions pour ’accés aux données (JdbcTemplate, Spring Data) qui réduisent le code
répétitif.

e Gestion déclarative des transactions (annotations ou configuration) pour ne pas écrire de code
transactionnel partout.

3. Cross-cutting concerns (préoccupations transverses)

Probléme : Sécurité, logging, transactions, cache, monitoring s’imbriquent dans le code métier et
polluent la logique.

Solution Spring AOP (programmation orientée aspect) :

e Permet d’extraire ces préoccupations transverses en aspects (advice, pointcuts), appliqués sans
modifier la logique métier.

4. Architecture monolithique et rigidité
Probléme : Applications monolithiques difficiles a modulariser et a faire évoluer.
Solution Spring :

® Architecture modulaire (choisissez les modules nécessaires).

e Spring Boot :conventions et auto-configuration pour démarrer vite, tout en restant modulaire si

besoin.
5. Difficulté d’intégration (technologies variées)
Probléme : Intégrer IMS, AMQP, Web Services, batch, jobs planifiés, etc., impliquait souvent du glue code
complexe.

Solution Spring :

Modules d’intégration et adaptateurs (Spring Integration, Spring Cloud, Spring Batch, Spring AMQP)
qui normalisent ’intégration et offrent des patterns préts a I’emploi.

6. Configurations multiples et gestion des environnements

Probléme : Comment gérer configurations pour dev/test/prod sans dupliquer ?

Solution Spring Boot + Profiles + Properties/ConfigServer :

Profiles (dev/prod/test) et sources de configuration (fichiers properties/Y AML, variables d’environnement,

serveur de config) centralisent la configuration.

7. Evolutivité et modernité
Probléme : Besoin de réactivité,non-bloquant, microservices, déploiement cloud.
Solution Spring :

Spring WebFlux pour Web non bloquant (reactive).
Spring Cloud pour patterns cloud (service discovery, configuration, circuit breaker, gateway).

Architecture modulaire de Spring

Spring est congu en modules distincts que tu peux combiner selon les besoins. Voici les modules
principaux, leur rdle et quand les utiliser.

Spring Boot n’est pas un module isol¢ mais un éco-systéeme qui assemble et configure automatiquement

les modules Spring pour démarrer rapidement.

1. Spring Core

Spring Core constitue le coeur du framework Spring et fournit les fondations essentielles pour toute
application Spring. Il implémente le principe d’Inversion of Control (IoC) et gere les beans via des
conteneurs comme BeanFactory ou ApplicationContext. Spring Core s’occupe également du cycle de vie des
beans, de leur création a leur destruction, et permet I’injection de dépendances, facilitant ainsi 1’architecture
modulaire et la maintenabilité des applications.

2. Spring AOP

SpringAOP (Aspect-Oriented Programming) permet d’introduire la programmation orientée aspects afin de
traiter des préoccupations transversales comme la gestion des transactions, le logging, la sécurité ou la
collecte de métriques. L’utilisation de Spring AOP favorise une séparation nette des responsabilités, en
permettant de gérer ces aspects de maniere centralisée sans polluer la logique métier.

3. Spring Data

Spring Data fournit un ensemble d’abstractions pour simplifier I’acceés aux données et réduire le code des
couches DAO ou repository. Grace a des modules comme Spring Data JPA, MongoDB ou Redis, il est
possible de bénéficier d’implémentations automatiques de repository et d’exploiter des méthodes de
recherche prédéfinies. Cela accélére le développement et garantit des pratiques standardisées pour la
gestion de la persistance.

4. Spring Transaction

Le module Spring Transaction assure la gestion déclarative des transactions dans les applications,
principalement via 1’annotation @Transactional. Cela permet de garantir la cohérence des opérations sur la
base de données et d’assurer le rollback automatique en cas d’exception, simplifiant ainsi la gestion de la
fiabilité et de ’intégrité des données.

5. Spring MVC / Web

Spring MVC est un framework de type Model-View-Controller destiné a la création d’applications web
classiques. Il fournit des mécanismes pour définir des contrdleurs, gérer les vues et résoudre les requétes
HTTP. Ce module est particulie¢rement adapté pour construire des applications RESTful ou des pages
serveur coté backend utilisant des technologies comme Thymeleaf ou JSP.

6. Spring WebFlux

Spring WebFlux introduit une approche réactive et non bloquante pour la création d’applications web.
Basé sur Project Reactor, il est concu pour gérer des charges élevées et des opérations d’entrée/sortie
intensives. Contrairement a Spring MVC, WebFlux n’est pas un simple “upgrade”, mais une architecture
différente destinée a répondre a des besoins spécifiques de réactivité et de scalabilité.

7. Spring Security

SpringSecurity fournit un cadre complet pour sécuriser les applications. Il gére I’authentification,
I’autorisation et la protection des endpoints, et prend en charge des protocoles modernes comme OAuth2 et
OpenID Connect. Ce module est essentiel pour sécuriser les APIs et les applications web, en garantissant la
protection des données et la conformité aux bonnes pratiques de sécurité.

8. Spring Boot

SpringBoot simplifie considérablement la configuration et le packaging des applications Spring. Il permet
d’exécuter les applications de maniére autonome grace a un serveur embarqué tel que Tomcat ou Jetty. Avec
ses fonctionnalités d’auto-configuration et ses starters (par exemple
spring-boot-starter-web ou spring-boot-starter-data-jpa), Spring Boot accélére le développement en

fournissant des valeurs par défaut et une structure standardisée, tout en restant flexible.

9. Spring Cloud

Spring Cloud fournit un ensemble d’outils pour les architectures distribuées et les environnements cloud. I1
facilite la découverte de services, la centralisation des configurations via Config Server, la gestion des
gateways et des circuits breaker, et bien d’autres fonctionnalités. Ce module est particulierement pertinent

dans le contexte des microservices et du déploiement sur des plateformes cloud comme Kubernetes ou
AWS.

10. Spring Integration / Spring Batch / Spring AMQP / Spring Kafka

Ces modules répondent adesbesoins spécifiques. Spring Integration permet d’implémenter des patterns
d’intégration et de communication entre systémes via des canaux de messages et des adaptateurs. Spring
Batch est congu pour les traitements par lots, avec gestion des jobs, steps et restartabilité. Spring AMQP et
Spring Kafka facilitent la messagerie asynchrone et événementielle, idéale pour les architectures basées sur
les événements, les ETL ou les traitements batch.

11. Spring Web Services

Spring WebServices permet de créer et de consommer des services web SOAP. 11 fournit des outils pour
exposer des endpoints SOAP, manipuler des messages XML et gérer les contrats WSDL, offrant ainsi une
approche robuste pour 1’intégration via web services standards.

12. Spring Test

Spring Testfournit des utilitaires pour les tests unitaires et d’intégration dans le contexte Spring. Avec des
annotations comme @SpringBootTest et les slices de test, il facilite la création de tests rapides, isolés et
réalistes, permettant de vérifier le comportement des composants Spring tout en conservant un contexte
applicatif cohérent.

Comment les modules s’articulent

Les modules Spring s’organisent de maniére cohérente pour construire des applications modulaires et
maintenables. A la base, on retrouve Spring Core, le Context et la gestion des Beans, qui sont toujours
présents et constituent le socle de toute application Spring.

Au-dessus de cette base se situe la couche métier, composée des services annotés @Service ou
@Component, qui contiennent la logique métier et orchestrent les opérations de 1’application. L’accés aux
données est pris en charge par Spring Data ou JdbcTemplate, avec les repositories qui simplifient la
gestion de la persistance et des opérations sur les bases de données.

Pour la partie Web ou API, Spring MVC ou Spring WebFlux expose les endpoints nécessaires,
permettant la communication avec les clients ou d’autres services. Les aspects transverses tels que la
sécurité et la programmation orientée aspects (AOP) sont gérés par Spring Security ou des aspects
personnalisés, apportant des fonctionnalités globales comme 1’authentification, 1’autorisation, le logging
et la gestion des transactions.

Enfin, pour I’infrastructure et le déploiement, Spring Boot assure le démarrage rapide de 1’application et
I’auto-configuration, tandis que Spring Cloud fournit des fonctionnalités avancées pour les architectures
microservices, comme la découverte des services ou la configuration centralisée. La couche test compléte
cette architecture grace a Spring Test, qui permet de valider les composants et de garantir la qualité et la
fiabilité du code.

Bénéfices concrets & Cas d’usage

L’adoption de Spring apporte de nombreux bénéfices concrets pour le développement d’applications. Tout
d’abord, le découplage des composants facilite la maintenance et 1’évolutivité du code, car chaque classe
peut évoluer indépendamment des autres. La testabilité est également améliorée : grace a I’injection de
dépendances, il est possible de réaliser des tests unitaires et d’intégration plus simples et isolés. Spring
favorise également la productivité, en réduisant le code répétitif grace aux starters et a I’auto-configuration,
permettant aux développeurs de se concentrer sur la logique métier.

La réutilisabilité des composants est renforcée, chaque module pouvant étre facilement remplacé ou
utilisé dans différents projets. Enfin, Spring contribue a la robustesse des applications, notamment par la
gestion intégrée des transactions, des retries ou d’autres mécanismes critiques pour la fiabilité des
systémes.

Ces bénéfices se traduisent concrétement dans de nombreux cas d’usage. Pour la création d’API REST
d’entreprise, on combine généralement Spring Boot avec Spring MVC, Spring Data JPA et Spring
Security. Pour les systémes événementiels, on peut s’appuyer sur Spring Boot associé a Katka ou AMQP
et Spring Integration. Les traitements batch utilisent quant a eux Spring Batch, tandis que les
architectures de microservices distribués tirent parti de Spring Cloud pour la découverte des services, la
gestion centralisée des configurations et I’implémentation de passerelles et de circuits de résilience.

Quelques bonnes pratiques architecturales liées a la philosophie Spring

Il est recommandé de privilégier I’injection par constructeur dans les classes Spring. Cette approche
favorise I’immutabilité des objets et améliore considérablement la testabilité, car toutes les dépendances
nécessaires sont explicitement déclarées dés la création de 1’objet.

Une bonne architecture Spring nécessite ¢galement de séparer clairement les différentes couches de
I’application. Les controllers doivent uniquement orchestrer les requétes et déléguer la logique métier aux
services, tandis que les repositories se chargent de 1’accés aux données. Cette séparation favorise la lisibilité,
la maintenabilité et la réutilisabilité du code.

Pour renforcer la flexibilité et permettre un découplage plus fort, il est conseillé d’utiliser des interfaces
pour les services. Cela facilite le remplacement d’implémentations et les tests unitaires, tout en respectant
le principe de programmation orientée interface.

Dans les controllers, il faut limiter la logique métier. Les controllers doivent agir comme des
coordinateurs, orchestrant les appels aux services plutdt que de contenir des calculs ou des régles complexes.
Cela rend le code plus clair et simplifie sa maintenance.

L’utilisation de Spring Boot est fortement recommandée pour accélérer le démarrage des projets et
bénéficier de I’auto-configuration. Cependant, il reste important de comprendre quelles configurations sont
appliquées automatiquement pour éviter des comportements inattendus ou des conflits. La gestion du scope
des beans est également un point important : par défaut, les beans sont singleton, ce qui signifie qu’une seule
instance est partagée dans I’application. Dans certains cas spécifiques, un scope prototype peut étre utilisé
pour créer une nouvelle instance a chaque demande.

Enfin, il est conseillé d’utiliser les profiles Spring (dev, test, prod)pour gérer les configurations spécifiques
a chaque environnement. Cette approche centralise les paramétres et évite la duplication ou les erreurs liées
a la modification manuelle des configurations lors du passage d’un environnement a un autre.

10

2.2. Inversion de Controle (IoC)

L’Inversion de Contrdle constitue le principe fondamental sur lequel repose Spring Framework. Ce
mécanisme permet au framework de prendre en charge la création, I’assemblage et la gestion des
composants applicatifs, ce qui favorise une architecture modulaire, maintenable et facilement testable.

Concept theéorique : Qu’est-ce que I’'IoC ?

1. Définition

L’Inversion de Contrdle (IoC) est un principe d’architecture logicielle selon lequel la responsabilité de
créer et de gérer les objets n’est plus assurée par le code métier mais par un conteneur externe. Dans le
contexte de Spring, ce role est rempli par le conteneur loC.

Au lieu de créer explicitement leurs dépendances au moyen de I’instruction new, les composants

déclarent uniquement ce dont ils ont besoin. C’est le conteneur Spring qui se charge ensuite de fournir les
instances nécessaires.

2. Origine du terme "Inversion"

Habituellement, les objets controlent leur propre flux d'exécution et instancient directement leurs
dépendances. L’IoC inverse ce mécanisme : le framework prend le contrdle du cycle d'exécution et de la
gestion des objets. Les composants deviennent ainsi passifs dans leur création et actifs seulement dans
I’exécution de leur logique métier.

3. Avantages de I’'loC

L’utilisation de Spring et de I’injection de dépendances permet de réduire fortement le couplage entre les
classes, chaque composant pouvant se concentrer sur sa propre responsabilité sans dépendre directement des
implémentations des autres. Cette approche favorise une meilleure maintenabilité et modularité du code,
rendant les applications plus faciles a faire évoluer et a organiser.

Elle simplifie également les tests unitaires, car il devient possible d’injecter des dépendances simulées
(mocks) pour isoler chaque composant et tester son comportement indépendamment du reste de
I’application. En outre, Spring permet une centralisation et une uniformisation de la configuration, évitant
la duplication de parameétres et facilitant la gestion des différents environnements. Enfin, cette architecture
favorise la réutilisabilité des composants, qui peuvent étre utilisés dans différents modules ou projets sans
modification, grace a leur faible dépendance aux autres classes et a la clarté de leur interface.

Le Conteneur Spring : ApplicationContext

Le conteneur Spring 1oC est 1’é1ément chargé de créer les objets, de résoudre leurs dépendances et de
gérer leur durée de vie.

1. Roéle du conteneur

Le conteneur Spring constitue le cceur de 1’architecture Spring et assure la gestion complete des
composants de I’application. Il est responsable de I’instanciation des objets déclarés comme beans et de

11

I’injection automatique des dépendances nécessaires pour leur fonctionnement. Le conteneur gére également
le cycle de vie des beans, depuis leur création jusqu’a leur destruction, tout en appliquant les mécanismes
transverses tels que I’ AOP pour la gestion des aspects comme le logging, la sécurité ou les transactions.

De plus, le conteneur Spring est capable de lire et d’interpréter les configurations, qu’elles soient définies
en XML, via des annotations ou avec des classes de configuration Java. Il offre également une série de
services supplémentaires facilitant le développement d’applications robustes, tels que 1’internationalisation,
la gestion des événements applicatifs ou le chargement centralisé des ressources. Grace a ces fonctionnalités,
le conteneur Spring permet de simplifier la construction, la configuration et la maintenance des applications
tout en garantissant une architecture cohérente et modulable.

2. ApplicationContext

ApplicationContext est I’interface principale du conteneur loC.
Ses implémentations les plus courantes sont :

e ClassPathXmlApplicationContext : configuration basée sur XML ;

e AnnotationConfigApplicationContext : configuration basée sur les annotations ou les

classes Java annotées ;

e implémentations spécialisées utilisées par Spring Boot pour les applications Web embarquées.

ApplicationContext context =
new AnnotationConfigApplicationContext(AppConfig.class);

MyService service = context.getBean(MyService.class);
service.process();

Cycle de vie des beans
Un bean est un objet géré par Spring. Son cycle de vie complet comprend les étapes suivantes :

1. Chargement de la configuration

Spring analyse les fichiers XML, les annotations ou les classes Java annotées pour identifier les beans a
gérer.

2. Instanciation

Le conteneur crée I’objet en appelant son constructeur.

12

3. Injection des dépendances
Les dépendances nécessaires au bean sont injectées selon le mode défini (constructeur, méthodes setters
ou champs).

4. Post-traitements

Les BeanPostProcessor permettent d’intercepter ou de modifier les beans aprées leur création mais avant
leur initialisation. C’est & ce stade que les proxys AOP sont générés.

5. Initialisation

Le conteneur appelle les mécanismes d’initialisation :

e méthode annotée @PostConstruct ;
e méthode d’initialisation spécifiée dans la configuration ;
e implémentation éventuelle de ’interface InitializingBean.

6. Phase d’utilisation

Le bean est pleinement opérationnel et peut étre utilisé dans 1’application.
7. Destruction
Lors de I’arrét du contexte, Spring exécute :

e la méthode annotée @PreDestroy ;
e la méthode de destruction déclarée dans la configuration ;

e I’interface DisposableBean si elle est implémentée.

Configuration Spring : XML, Annotations, Java Config
Spring propose trois grands modeles de configuration. Chacun présente un niveau de flexibilité distinct.

1. Configuration XML

C’est la méthode historique ou les définitions de beans sont déclarées dans des fichiers XML.

Exemple :

<bean id="myService" class="com.example.MyService"/>

13

Caractéristiques :

e Séparation stricte entre code et configuration ;
® Procédure généralement plus verbeuse ;

e Utilisée principalement dans les projets existants ou pour des besoins trés spécifiques.

2. Configuration basée sur les annotations

Introduite avec Spring 2.5, elle permet d’annoter directement les classes pour que Spring les détecte
automatiquement. Par exemple :

public class MyService {}

private MyService myService;

3. Java Config (Configuration par classes Java)

Méthode recommandée, introduite avec Spring 3, qui permet de configurer Spring via des classes Java
annotées.

Exemple :

public class AppConfig {

public MyService myService() {
return new MyService();

Caractéristiques :

e Contrdle total par la programmation ;

e Vérification des erreurs a la compilation ;
e Intégration naturelle avec Spring Boot ;
e Gestion centralisée et lisible de la configuration.

14

Comparaison synthétique

Critére XML Annotations Java Config
Niveaudemodernité Faible Elevé Tres élevé
Lisibilité Moyenne Bonne Excellente
Flexibilité Elevée Moyenne Trés élevée
Usage dansSpring Boot Rare Fréquent Privilégié
Utilisationrecommandée Projets existants Projets courants Projets modernes

2.3 Injection de Dépendances (DI)

Principe de la DI et ses avantages

L’injection de dépendances (Dependency Injection, DI) est un mécanisme fondamental de Spring permettant
de déléguer la création et la gestion des objets au conteneur [oC. Au lieu qu'une classe instancie elle-méme
ses dépendances, celles-ci lui sont fournies de 1’extérieur. Cette approche améliore la modularité et réduit
fortement le couplage entre les composants.

Les principaux avantages de la DI sont :

e Réduction du couplage : les classes ne dépendent plus directement de 1’implémentation mais
d’interfaces ou d’abstractions.

e Facilité de test : les dépendances peuvent étre remplacées par des mocks ou des doublures.

e Réutilisabilité accrue : les composants deviennent plus génériques et indépendants.

e Configuration centralisée : toutes les dépendances sont gérées par Spring, ce qui évite les

instanciations répétitives.

e Evolution facilitée : changer une implémentation ne nécessite aucune modification dans les

classes consommatrices.

Types d’injection : constructeur, setter et field

1. Injection par constructeur

L’injection par constructeur consiste a passer les dépendances d’une classe directement via son
constructeur. Cette approche présente plusieurs avantages importants : elle assure que toutes les
dépendances nécessaires sont fournies, garantissant ainsi que 1’objet est correctement initialisé des sa
création. Elle favorise également ’immuabilité des objets, car les dépendances peuvent étre déclarées

final et ne peuvent pas étre modifiées apres 1’instanciation. Pour ces raisons, ’injection par

15

constructeur est particuliecrement recommandée pour les composants critiques , ou la fiabilité et la
cohérence des dépendances sont essentielles.

Exemple (Spring Boot) :

public class OrderService {
private final PaymentService paymentService;

public OrderService(PaymentService paymentService) {
this.paymentService = paymentService;

2. Injection par setter

L’injection par setter consiste a fournir les dépendances d’une classe via des méthodes publiques de type
setter. Cette approche est particulicrement adaptée pour les dépendances optionnelles, qui ne sont pas
indispensables lors de la création de 1’objet. Elle est également utile lorsque la dépendance peut changer
apreés D’instanciation, offrant ainsi plus de flexibilité. Cependant, cette méthode est moins stricte que
I’injection par constructeur, car il n’est pas garanti que toutes les dépendances soient présentes au moment
de la création de 1’objet.

public class NotificationService {
private EmailService emailService;

public void setEmailService(EmailService emailService) {
this.emailService = emailService;

3. Injection par champ (field injection)

L’injection par champ consiste a laisser Spring injecter directement les dépendances dans les attributs
annotés de la classe, généralement avec @Autowired. Cette approche présente I’avantage d’une syntaxe
simple et rapide, car il n’est pas nécessaire d’écrire des constructeurs ou des setters. Cependant, elle est
déconseillée dans les projets professionnels, car elle complique les tests unitaires et empéche I’immuabilité
des objets. Pour cette raison, 1’injection par champ ne devrait étre utilisée que de maniére exceptionnelle,
lorsque la simplicité prime sur la testabilité ou la flexibilité.

16

public class ReportService {

private DataService dataService;

Bonnes pratiques d’injection

Spring recommande plusieurs reégles pour garantir un code maintenable :

1. Privilégier I’injection par constructeur pour les dépendances principales.
2. Limiter I’injection par champ, principalement utilisée dans les projets simples ou dans les tests.
3. Utiliser des interfaces lorsque c’est pertinent pour réduire le couplage.

4. Eviter la logique métier dans les constructeurs, qui doivent uniquement recevoir les
dépendances.

5. Ne pas multiplier les dépendances : si une classe nécessite trop de services externes, cela peut
indiquer un probléme de conception.

3.4 Autowiring

M¢écanismes d’ Autowiring (@Autowired, @Qualifier)

L’autowiring est une fonctionnalité permettant a Spring de résoudre automatiquement les dépendances entre
les composants. Le développeur n’a pas besoin d’instancier ou de configurer explicitement les objets :
Spring le fait en fonction du type des dépendances.

1. @ Autowired
Indique a Spring d’injecter automatiquement la dépendance requise.

e Pecut étre utilisé sur :

un constructeur,
un setter,

un champ,

une méthode.

o O O O

Spring recherche un bean compatible par son type.

17

2. @Qualifier

Permet de résoudre les ambiguités lorsqu’il existe plusieurs beans du méme type.

publicclass BillingService {

("paypalService")
private PaymentService paymentService;

Ici, Spring injectera spécifiquement le bean nommé paypalService.

Résolution des ambiguités

Lorsque plusieurs implémentations du méme type existent, Spring ne peut pas déterminer lequel injecter.
Dans ce cas :

1. @Qualifier identifie explicitement le bean désiré.
2. @Primary définit une implémentation par défaut.

3. Le nom du bean peut étre utilisé implicitement si aucune annotation n’est fournie.

Exemple avec

public class StripePaymentService implements PaymentService { }

@Component, @Service, @Repository, @Controller

Ces annotations indiquent a Spring que les classes doivent étre détectées automatiquement via le

mécanisme de scan de composants.

1. @Component
Annotation générique permettant de déclarer un bean géré par Spring.

18

2. @Service

Spécialisation de @Component pour les services métiers.Elle indique que la classe contient la logique
applicative.

3. @Repository

Annotation indiquant une classe d’accés aux données. Elle gére automatiquement certains aspects tels
que la traduction des exceptions JDBC.

4. @Controller

Utilisée dans Spring MVC pour indiquer qu’une classe gere les requétes HTTP. Elle expose des points
d’entrée via des méthodes annotées comme @GetMapping ou @PostMapping.

19

Chapitre 3. Spring Boot : Simplification du
Développement

Alors que le framework Spring esttrés puissant,il peut devenir complexe a configurer lorsque 1’application
commence a grandir. Spring Boot apporte une approche plus simple et plus rapide grace a des mécanismes
comme I’auto-configuration, les starters, un systéme de configuration centralisé et différents outils
destinés a améliorer la productivité du développeur. Dans ce chapitre, nous allons découvrir comment Spring
Boot simplifie la création d’applications Java, en particulier pour les projets JEE modernes.

3.1 Qu'est-ce que Spring Boot ?

Spring Boot est un framework opinionated, ¢’est-a-dire qu’il propose des choix par défaut afin de faciliter
le travail du développeur. Son objectif principal est de permettre de créer rapidement des applications
basées sur Spring, sans avoir a répéter les mémes configurations techniques a chaque nouveau projet. Au
lieu d’écrire du code de configuration répétitif et souvent complexe, Spring Boot fournit un ensemble de
mécanismes qui automatisent cette configuration et permettent au développeur de se concentrer uniquement
sur la logique métier. Les fonctionnalités clés de Spring Boot incluent :

e Les Spring Boot Starters

e L’auto-configuration
e Une gestion de configuration élégante et centralisée
e Spring Boot Actuator
e Le support des serveurs embarqués
Spring Boot Starters

Spring Boot propose de nombreux modules appelés starters, qui permettent de démarrer rapidement avec
les technologies les plus courantes telles que Spring MVC, JPA, MongoDB, Spring Batch, Spring Security
etc.

Ces starters sont préconfigurés avec les dépendances de bibliothéques les plus utilisées, ce qui évite au
développeur de devoir chercher manuellement les versions compatibles et de les configurer une par une.

Par exemple, le module spring-boot-starter-data-jpa regroupe toutes les dépendances nécessaires pour
utiliser Spring Data JPA, ainsi que les bibliothéques d’Hibernate, car Hibernate est I’implémentation JPA
la plus couramment utilisée.

20

(] Note Vous pouvez trouver la liste compléte de tous les starters Spring Boot disponibles
par défaut dans la documentation officielle a I’adresse suivante:

http://docs.spring.io/spring-boot/docs/current/reference/htmlsing
le/ #using-boot-starter-poms.

Spring Boot Autoconfiguration

Spring Boot résout le probléme de la configuration complexe des applications Spring en éliminant la
nécessité de définir manuellement toutes les configurations répétitives (boilerplate configuration).

Il adopte une approche dite opinionated, ce qui signifie qu’il fait des choix par défaut pour faciliter la
mise en place de I’application. Spring Boot configure automatiquement différents composants en
enregistrant des beans selon plusieurs critéres, tels que :

e Laprésence d’une classe spécifique dans le classpath
e Laprésence ou I’absence d’un bean Spring particulier
e [’existence d’une propriété systéme

e [’absence d’un fichier de configuration

Par exemple, Si vous avez la dépendance spring-webmvc dans votre classpath, Spring Boot suppose
que vous souhaitez créer une application web basée sur Spring MVC et enregistre automatiquement le
DispatcherServlet, sauf s’il a déja été défini.

Si un driver de base de données embarquée comme H2 ou HSQL est présent dans le classpath, et que
vous n’avez pas configuré explicitement de bean DataSource, Spring Boot créera automatiquement un
DataSource en utilisant une base de données en mémoire.

Gestion de Configuration Flégante

Spring permet déja d’externaliser les propriétés configurables grace a 1’annotation (@PropertySource.
Spring Boot va encore plus loin en proposant des valeurs par défaut pertinentes ainsi qu’un systéme puissant
de liaison de propriétés typées, permettant d’associer directement les valeurs de configuration aux
propriétés d’un bean.

Il offre également la possibilité de gérer facilement plusieurs fichiers de configuration selon les profils
(dev, test, prod), sans avoir besoin d’une configuration complexe.

21

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/%20#using-boot-starter-poms.
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/%20#using-boot-starter-poms.

Spring Boot Actuator

Avoir une visibilité claire sur une application en production est essentiel pour garantir sa stabilité et
détecter les problémes rapidement.

Le module Spring Boot Actuator fournit un ensemble complet de fonctionnalités prétes a I’emploi, sans
nécessiter beaucoup de code ou de configuration.Parmi les fonctionnalités principales de I’ Actuator, on peut
citer :

e La consultation des détails de configuration des beans

e [’affichage des mappings d’URL, des informations d’environnement et des valeurs des
parametres de configuration

e [’acces aux métriques de santé et aux indicateurs de performance de 1’application

Support des Serveurs Embarqués

Traditionnellement, le développement d’applications web en Java nécessitait la création de modules de
type WAR, puis leur déploiement sur des serveurs externes tels que Tomcat, WildFly, etc.Avec Spring
Boot, ce n’est plus nécessaire.Vous pouvez créer un module JAR et embarquer directement le conteneur
servlet dans I’application. L’application devient alors une unité de déploiement autonome, facile a exécuter
et a transporter.Pendant le développement, il est également possible de lancer facilement 1’application
Spring Boot (au format JAR) directement depuis I’IDE ou depuis la ligne de commande, a 1’aide d’outils
comme Maven ou Gradle.

3.2 Explorez Votre Premiére Application Spring Boot

Il existe plusieurs fagons de créer une application Spring Boot. La méthode la plus simple consiste a
utiliser Spring Initializr via I’adresse_start.spring.io, qui est un générateur en ligne d’applications Spring
Boot.

Dans cette section, nous verrons comment créer une application web Spring Boot simple, capable de
servir une page HTML, et nous explorerons les différents éléments qui composent une application
Spring Boot typique.

Créer Le Projet Avec Spring Initializr

Vous pouvez accéder a ’adresse start.spring.io depuis votre navigateur pour consulter les détails
du projet, comme illustré dans la Figure 3-1.

22

http://start.spring.io/
http://start.spring.io/
http://start.spring.io/

O

C spring initializr

Project Language
O Gradle - Groovy L
O Gradie - Kotin @ 1

Q Kotin O Groowy

Spring Boot
O 4.00(SHAPSHOT) O 400(RCZ) O 358(SNAPSHOT) @
O 3412 (SNAPSHOT) O 3411

Project Metadata

Group com.mycompany

Arifact springboot-basic

Mame springboot-basic

Description Demo project for Spring Boot

Package name com.mycompany.springboot-basic

Packaging @ O war

Configuration @ P O YAML

Java O On @9

Dependencies ADD DEPENDENCIES... CTRL +B

Spring Web [
Biuild wab, including RESTRI, applications using Spring MVC, Uses Apache
Tomeat as the default embedded container.

GENERATE CTRL +: | ‘ EXFLORE CTRL + SPACE I‘ I

Figure 3-1. Spring Initializr

4,

Sélectionnez Maven Project et la version de Spring Boot

Saisissez les informations du projet Maven comme suit :

2.1. Group : com.mycompany
2.2. Langage: Java

2.3. Artifact : springboot-basic

24. Name: springboot-basic
2.5.

2.6.

Packaging : JAR
2.7.

Version Java : 17

Vous pouvez rechercher directement les starters si vous connaissez leur nom. Vous verrez de
nombreux modules regroupés par catégorie, comme Core, Web, Data, etc. Sélectionner Spring

Package Name : com.mycompany.springboot-basic

Web dans la catégorie Web. Cliquez sur le bouton Generate.

Cliquez sur le bouton Generate.

Vous pouvez maintenant extraire le fichier ZIP téléchargé et I’importer dans votre IDE préféré.

23

Exploration du Projet

Maintenant que vous avez créé un projet Spring Boot basé sur Maven avec le starter Web, vous étes prét a
explorer le contenu de I’application générée.

1. Tout d’abord, jetezun ceil au fichier pom.xml .

Listing 3-1. Fichier pom.xml

xml version="1.0" encoding="UTF-8"
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>org.springframework.boot</groupIld>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.5.7</version>
<relativePath/> <!-- Llookup parent from repository -->

</parent>

<groupId>com.mycompany</groupIld>
<artifactId>springboot-basic</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>springboot-basic</name>

<description>Demo project for Spring Boot</description>
<url/>

<licenses>
<license/>
</licenses>

<developers>
<developer/>
</developers>

<scm>
<connection/>
<developerConnection/>
<tag/> <url/>

</scm>

<properties>
<java.version>17</java.version>

24

</properties>

<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>

<dependency>
<groupId>org.springframework.boot</groupIld>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupIld>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

</project>

La premicre chose a noter est que le module Maven springboot-basic hérite du module spring-boot-
starter-parent. En héritant de ce module parent, le nouveau module bénéficie automatiquement des
avantages suivants :

e Version Spring Boot centralisée : vous n’avez besoin de spécifier la version de Spring Boot
qu’une seule fois dans la configuration du module parent. Il n’est pas nécessaire d’indiquer la
version pour tous les starters et autres bibliothéques de support. Pour consulter la liste de ces
bibliothéques, vous pouvez consulter le fichier pom.xml du module Maven
org.springframework.boot:spring-boot-dependencies:{version}.

e Plugins Maven préconfigurés : le module parent spring-boot-starter-parent inclut déja les plugins
Maven les plus couramment utilisés, tels que maven-jar-plugin, maven-surefire-plugin, maven-war-
plugin, exec-maven-plugin et maven-resources-plugin, avec des valeurs par défaut pertinentes.

e Construction de JAR “fat” : en plus des plugins mentionnés, le module parent configure
¢galement le spring-boot-maven-plugin, utilis¢ pour créer des JAR auto-exécutables (fat JAR).

25

Dans cet exemple, seul le starter Webaété sélectionné, mais le starter de test est inclus par défaut.

La version Java choisie est 17, ce quiexplique la présence de la propriété suivante dans le pom.xml :

<java.version>17</java.version>

Cette valeur est utilisée pour configurer la version du JDK pour le compilateur Maven dans le module
spring-boot-starter-parent:

<maven.compiler.source>${java.version}</maven.compiler.source>
<maven.compiler.target>${java.version}</maven.compiler.target>

2. Le module Spring Boot généré de type JAR contient une classe Java servant de point d’entrée
a Dapplication, appelée SpringbootBasicApplication.java, avec la méthode public static void
main(String[] args).C’est cette méthode que vous pouvez exécuter pour démarrer 1’application.

Listing 3-2. com.mycompany.springboot_basic

package com.mycompany.springboot_basic;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

public class SpringbootBasicApplication {

public static void main(String[] args) {
SpringApplication.run(SpringbootBasicApplication.class, args);

Ici, la classe SpringbootBasicApplication est annotée avec @SpringBootApplication, qui est une
annotation composée.

@Target(ElementType.TYPE)

@Retention(RetentionPolicy.RUNTIME)

@Documented

@Inherited

@SpringBootConfiguration

@EnableAutoConfiguration

@ComponentScan(excludeFilters = {

@Filter(type = FilterType.CUSTOM, classes = TypeExcludeFilter.class),
@Filter(type= FilterType.CUSTOM, classes = AutoConfigurationExcludeFilter.class)

26

})
public @interface SpringBootApplication {

L’annotation @SpringBootConfiguration est elle-méme une annotation composée, utilisant I’annotation
@Configuration de Spring .

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented

@Configuration

public @interface SpringBootConfiguration {
}

Voici la signification de ces annotations :
e (@Configuration : indique que cette classe est une classe de configuration Spring.

e (@ComponentScan : active le scan des composants pour détecter automatiquement les beans
Spring dans le package ou la classe actuelle est définie.

e @EnableAutoConfiguration : déclenche les mécanismes d’auto-configuration de Spring
Boot.

L’application est initialisée en appelant la méthode
SpringApplication.run(SpringbootBasicApplication.class, args)dans la méthode main(). Il est possible de
passer une ou plusieurs classes de configuration Spring a la méthode SpringApplication.run().Cependant, si
la classe de point d’entrée de votre application se trouve dans le package racine, il suffit de passer
uniquement cette classe. Spring Boot se charge alors de scanner automatiquement toutes les autres classes
de configuration Spring présentes dans les sous-packages.

3. Créez maintenant un contrdleur Spring MVC simple, appel¢ HomeController.java.

Listing 3-3. HomeController.java

packagecom.mycompany.springboot_basic;
importorg.springframework.stereotype.Controller;
importorg.springframework.ui.Model;
importorg.springframework.web.bind.annotation.RequestMapping;

publicclass HomeController{

/")
publicString home(Model model) {
return "index.html";

27

11 s’agit d’un contréleur Spring MVC simple comportant une méthode de gestion des requétes pour
I’URL /, qui retourne la vue nommeée index.html.

4. Créez une vue HTML appelée index.html.

Par défaut, Spring Boot sert le contenu statique depuis les répertoires src/main/public/ et src/main/static/
.Créez donc le fichier index.html dans src/main/public/.

Listing 3-4. index.html

<html>

<head>

<meta charset="utf-8"/>
<title>Home</title>
</head>

<body>

<h2>Hello World!!</h2>
</body>

</html>

Maintenant, depuis votre IDE, exécutez la méthode SpringbootBasicApplication.main() en tant
que classe Java autonome.
Cela démarrera le serveur Tomcat embarqué sur le port 8080. Ensuite, ouvrez votre navigateur et

rendez-vous a 1’adresse :http://localhost:8080/.Vous devriez voir la réponse : Hello World!!

11 est également possible de lancer 1’application Spring Boot en utilisant le plugin Maven
spring-boot-maven-plugin, avec la commande suivante :

mvn spring-boot:run

La Classe Point d’Entrée de 1’ Application

Les applications Spring Boot doivent disposer d’une classe point d’entrée contenant la méthode :
public static void main(String[] args)

Cette classe est généralement annotée avec @SpringBootApplication et sert 4 initialiser
I’application (bootstrap).

11 est fortement recommandé de placer la classe point d’entrée dans le package racine, par
exemple com.mycompany.myproject, afin que les annotations (@EnableAutoConfiguration et
scannent automatiquement les beans Spring, les entités JPA, etc., dans le package racine et tous ses
sous-packages.

Si la classe point d’entrée se trouve dans un package imbriqué, il est nécessaire de spécifier
explicitement les packages a scanner pour les composants Spring.

28

http://localhost:8080/
http://localhost:8080/

Listing 3.5. Classe principale com.mycompany.myproject.config.Application.java dans un

package non racine

package com.mycompany.myproject.config;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.context.annotation.Configuration;

import org.springframework.boot.autoconfigure.domain.EntityScan;
import org.springframework.context.annotation.ComponentScan;

(basePackages = "com.mycompany.myproject")
(basePackageClasses = Person.class)
publicclass Application {
public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}

Dans cet exemple, la classe Application.java se trouve dans le package com.mycompany.myproject.config,
qui n’est pas le package racine.

Il est donc nécessaire de spécifier @ComponentScan(basePackages = "com.mycompany.myproject") pour
que Spring Boot scanne le package racine et tous ses
sous-packages a la recherche des composants Spring et utiliser @EntityScan(basePackageClasses =
Person.class) pour que Spring Boot détecte les entités JPA dans le package ou se trouve la classe
Person.class.

Création d’un Fat JAR avec le Spring Boot Maven Plugin

Pendant le développement, vous pouvez exécuter votre application directement depuis I’IDE ou utiliser la
commande Maven : mvn spring-boot:run. Cependant, pour la production, il est nécessaire de créer une
unité de déploiement autonome pouvant étre exécutée sans IDE.Le spring-boot-maven-plugin permet de
créer une unité de déploiement unique (fat JAR) en exécutant les commandes Maven suivantes :

mvn clean package

Apreés compilation, deux fichiers intéressants apparaissent dans le répertoire target :

e springboot-basic-1.0-SNAPSHOT jar.original : contient uniquement les classes compilées et les ressources du
classpath.
e springboot-basic-1.0-SNAPSHOT jar : contient tout ce qui est nécessaire pour exécuter 1I’application

Spring Boot :

29

o Les classes compilées de votre code source (src/main/java) et les ressources statiques
(src/main/resources) se trouvent dans le répertoire BOOT-INF/classes.

o Tous les JAR dépendants sont dans BOOT-INF/lib .

o Les classes du package org.springframework.boot.loader, qui assurent la magie
Spring Boot permettant d’exécuter 1’application.

11 est possible de créer des JAR autonomes en utilisant des plugins comme maven-shade-plugin, qui
empaquettent toutes les classes dépendantes dans un seul JAR.

Spring Boot adopte une approche différente : il permet d' imbriquer les JAR directement dans le JAR
Spring Boot.
Pour plus de détails, vous pouvez consulter : Documentation Spring Boot — Fat JAR exécutable.

Pour exécuter 1’application, utilisez la commande suivante :

java -jar springboot-basic-1.0-SNAPSHOT. jar

3.3 Auto-Configuration

Maintenant que vous savez comment créer une application Spring Boot simple et I’exécuter, il est
intéressant de comprendre le fonctionnement de 1’auto-configuration de Spring Boot qui simplifie
considérablement la configuration des applications Spring. Cette approche réduit le temps de développement
et limite les erreurs liées a une configuration manuelle complexe.

Avant cela, il est important de connaitre la fonctionnalité @Conditional de Spring, sur laquelle repose
entiérement le mécanisme d’auto-configuration.

Principe du “Convention Over Configuration”

Le principe fondamental de 1’auto-configuration est celui du “convention over configuration” (ou
convention plutot que configuration).Autrement dit, Spring Boot applique des paramétres par défaut
pertinents pour la majorité des scénarios d’usage, de sorte que le développeur n’ait pas a configurer chaque
détail manuellement.Par exemple, si vous ajoutez la dépendance spring-boot-starter-web dans votre projet,
Spring Boot suppose que vous voulez créer une application web Spring MVC et configure automatiquement
un DispatcherServlet, un serveur embarqué Tomcat et d’autres

composants nécessaires.

Explorer La Puissance de @Conditional

Lors du développement d’applications basées sur Spring, il peut étre nécessaire d’enregistrer des beans de
maniére conditionnelle.Par exemple, vous pourriez vouloir enregistrer un bean DataSource pointant vers la
base de données DEV lorsque vous exécutez 1’application localement, et vers une base de données
PRODUCTION lorsque I’application est déployée en production.

30

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#executable-jar
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#executable-jar

Il est possible d’externaliser les paramétres de connexion a la base de données dans des fichiers de
propriétés et de sélectionner le fichier correspondant a I’environnement. Cependant, cela oblige & modifier la
configuration et a redéployer 1’application chaque fois que vous souhaitez changer d’environnement.

Pour résoudre ce probléme, Spring 3.1 a introduit le concept de profils.Vous pouvez enregistrer plusieurs

beans du méme type et les associer a un ou plusieurs profils. Lors de 1’exécution de I’application, vous
activez le(s) profil(s) souhaité(s), et seuls les beans associés aux profils activés seront enregistrés.

Listing 3-6. Configuration des DataSources par profil avec Spring

public class AppConfig {

(IIDEle)
public DataSource devDataSource() {

("PROD")
public DataSource prodDataSource() {

}

Avec cette configuration, il est possible de spécifier le profil actif via la propriété systéme :

-Dspring.profiles.active=DEV

Cette approche fonctionne bien pour des cas simples, comme activer ou désactiver 1’enregistrement de
beans selon le profil activé.Mais si vous souhaitez enregistrer des beans selon une logique conditionnelle
plus complexe, I’utilisation des profils seuls n’est pas suffisante.

Pour offrir une flexibilité beaucoup plus grande, Spring 4 a introduit le concept de @Conditional.
Avec cette approche, vous pouvez enregistrer un bean de maniére conditionnelle en fonction de n’importe
quelle condition arbitraire.
Par exemple, vous pouvez enregistrer un bean lorsque :
e Une classe spécifique est présente dans le classpath
e Un bean Spring d’un certain type n’est pas déja enregistré dans le
ApplicationContext
e Un fichier spécifique existe a un emplacement donné
e Une propriété spécifique est configurée dans un fichier de configuration
e Une propriété systeme spécifique est présente ou absente.

Ce ne sont que quelques exemples : il est possible de définir toute condition souhaitée.

31

Conditionnement Basé Sur Les Propriétés Systéme

Dans une application, il est souvent nécessaire de choisir dynamiquement entre plusieurs

implémentations selon l'environnement d'exécution. Par exemple, utiliser une base de données MySQL en
production et MongoDB en développement.

Considérons une interface UserDAO avec deux implémentations : JdbcUserDAO pour MySQL et
MongoUserDAO pour MongoDB.

Listing 3-1. Interface UserDAO , et implementations JdbcUserDAO MongoUserDAO

// Interface commune
public interface UserDAO {
List<String> getAllUserNames();

}

// Implémentation MySQL
public class JdbcUserDAO implements UserDAO {
@Override
public List<String> getAllUserNames() {
System.out.println("**** Getting usernames from RDBMS ***¥*!"):
return Arrays.asList("Jim", "John", "Rob");

}

//Implémentation MongoDB

publicclass MongoUserDAO implements UserDAO {
@Override
public List<String> getAllUserNames() {

System.out.println("**** Getting usernames from MongoDB *****").
return Arrays.asList("Bond", "James", "Bond");

Listing 3-2. MySQLDatabaseTypeCondition.java MongoDBDatabaseTypeCondition.java
// Condition pour MySQL
public class MySQLDatabaseTypeCondition implements Condition {

@Override
public boolean matches(ConditionContext conditionContext,
AnnotatedTypeMetadata metadata) {
String enabledDBType = System.getProperty("dbType");
return (enabledDBType != null &%&

enabledDBType.equalsIgnoreCase("MYSQL"));

}

// Condition pour MongoDB

32

publicclassMongoDBDatabaseTypeCondition implements Condition {

publicbooleanmatches(ConditionContext conditionContext,

AnnotatedTypeMetadata metadata) {

StringenabledDBType = System.getProperty("dbType");
return(enabledDBType != null &&

enabledDBType.equalsIgnoreCase("MONGODB"));

Vous pouvez maintenant configurer les beans JdbcUserDAO et MongoUserDAO de maniére
conditionnelle en utilisant 1’annotation @Conditional.
Listing 3-3. AppConfig.java

public class AppConfig {

(MySQLDatabaseTypeCondition.class)
public UserDAO jdbcUserDAO() {
return new JdbcUserDAO();

(MongoDBDatabaseTypeCondition.class)
public UserDAO mongoUserDAO() {
return new MongoUserDAO();

Si vous exécutez I’application avec la commande :java -jar myapp.jar -DdbType=MYSQL seul le bean

JdbcUserDAO sera enregistré.En revanche, si vous définissez la propriété systéme comme suit :

DdbType=MONGODB.Ie bean MongoUserDAO sera enregistré.

Les Annotations @Conditional intégrées de Spring Boot

Spring Boot propose de nombreuses annotations @Conditional personnalisées afin de répondre aux

besoins d’auto-configuration des développeurs selon différents critéres.

Le Tableau 3-1 répertorie les annotations @Conditional fournies par Spring Boot par défaut.

33

Annotation Description

@ConditionalOnBean S’applique lorsque les classes et/ou les noms
de beans spécifiés sont déja enregistrés.

@ConditionalOnMissingBean 11 s'applique lorsque les classes et/ou les noms
de beans spécifiés ne sont pas encore
enregistrés.

@ConditionalOnClass S’applique lorsque les classes spécifiées sont

présentes dans le classpath.

@ConditionalOnMissingClass S’applique lorsque les classes spécifiées ne

sont pas présentes dans le classpath.

@ConditionalOnProperty S’applique lorsque les propriétés spécifiées ont

une valeur particuliére.

@ConditionalOnResource S’applique lorsque les ressources spécifiées

sont présentes dans le classpath.

@ConditionalOnWebApplication S’applique lorsque le contexte de I’application

est un contexte web.

Tableau 3-1. Spring Boot @Conditional Annotations

Maintenant que vous savez comment Spring Boot utilise I’annotation @Conditional pour décider
conditionnellement d’enregistrer ou non un bean, vous pourriez vous demander ce qui déclenche
exactement le mécanisme d’autoconfiguration.

Comment L’ Autoconfiguration Fonctionne dans Spring Boot

La clé de I’autoconfiguration de Spring Boot est 1’annotation (@EnableAutoConfiguration.
En général, on [D’active en annotant la classe principale de [D’application avec
@SpringBootApplication, ou bien, si 1’on souhaite personnaliser certains comportements, avec les trois
annotations suivantes :

@Configuration
@EnableAutoConfiguration
@ComponentScan

public class Application {

}

34

L’annotation (@EnableAutoConfiguration permet & Spring d’activer le mécanisme
d’autoconfiguration en analysant le classpath et en enregistrant automatiquement les beans
correspondant a certaines conditions.

Spring Boot fournit de nombreuses classes d’autoconfiguration dans le module spring-boot-
autoconfigure-{version}.jar. Chaque classe joue un role dans la création et la configuration
automatique de composants spécifiques.

Les classes d’autoconfiguration sont généralement annotées avec @Configuration (elles représentent
des configurations Spring), annotées avec @EnableConfigurationProperties pour activer la liaison
automatique des propriétés de configuration et composées de méthodes qui enregistrent des beans,
souvent protégées par des annotations conditionnelles.Prenons 1’exemple de la classe suivante dans
Listing 3-4

Listing3-4. org.springframework.boot.autoconfigure.jdbc.DataSource AutoConfiguration

@Configuration @ConditionalOnClass({ DataSource.class, EmbeddedDatabaseType.class
}) @EnableConfigurationProperties(DataSourceProperties.class) @Import({
Registrar.class, DataSourcePoolMetadataProvidersConfiguration.class }) public
class DataSourceAutoConfiguration {

@Bean
@ConditionalOnMissingBean
public DataSourceInitializer dataSourcelInitializer(
DataSourceProperties properties,
ApplicationContext applicationContext) {
return new DataSourceInitializer(properties, applicationContext);

}

@Conditional (EmbeddedDatabaseCondition.class)
@ConditionalOnMissingBean({ DataSource.class, XADataSource.class })

@Import(EmbeddedDataSourceConfiguration.class)
protected static class EmbeddedDatabaseConfiguration { }

@Configuration

@Conditional(PooledDataSourceCondition.class)
@ConditionalOnMissingBean({ DataSource.class, XADataSource.class })
@Import({

DataSourceConfiguration.Tomcat.class,
DataSourceConfiguration.Hikari.class,
DataSourceConfiguration.Dbcp2.class,

DataSourceConfiguration.Generic.class

}

protected static class PooledDataSourceConfiguration { }

35

L’annotation @ConditionalOnClass({ DataSource.class, EmbeddedDatabaseType.class })indique que
I’autoconfiguration ne sera appliquée que si ces classes sont présentes sur le classpath.

De plus, @EnableConfigurationProperties(DataSourceProperties.class) active la liaison automatique
des propriétés externes vers une classe Java :

@ConfigurationProperties(prefix = DataSourceProperties.PREFIX)
public class DataSourceProperties {

public static final String PREFIX = "spring.datasource";
private String driverClassName;

private String url;

private String username;

private String password;

Ainsi, les propriétés suivantes seront automatiquement injectées dans 'objet DataSourceProperties:

spring.datasource.url=jdbc:mysql:
spring.datasource.username=root
spring.datasource.password=secret
spring.datasource.driver-class-name=com.mysql.jdbc.Driver

La classe DataSourceAutoConfiguration contient également de nombreuses méthodes ou classes
internes annotées avec :

e (@ConditionalOnMissingBean
e (@ConditionalOnClass
e (@ConditionalOnProperty

Ces conditions indiquent a Spring Boot quand un bean doit étre créé ou non.

Par exemple : un bean ne sera enregistré que si aucun autre bean du méme type n’existe déja, ou
seulement si une propriété est définie.
Dans le module d’autoconfiguration, vous pouvez aussi retrouver :

DispatcherServletAutoConfiguration
HibernateJpaAutoConfiguration
JpaRepositoriesAutoConfiguration
JacksonAutoConfiguration

Chacune applique automatiquement la configuration nécessaire selon ce qui est détecté dans le projet.

36

3.4 Les bases de Spring Boot

Spring Bootfournit plusieurs fonctionnalités permettant d’implémenter des fonctionnalités couramment
utilisées, comme la journalisation (logging), I’externalisation des propriétés de configuration et Spring Boot
Dev Tools pour redémarrer automatiquement le serveur lors de modifications du code, ce qui permet
d’améliorer la productivité des développeurs.

Logging

Le logging ou la journalisation est une partie trés importante de toute application et il aide a déboguer les
problémes. Par défaut, Spring Boot inclut spring-boot-starter-logging comme dépendance transitive pour
le module spring-boot-starter. Par défaut, Spring Boot utilise SLF4J avec les implémentations Logback.
Spring Boot posséde une abstraction LoggingSystem qui configure automatiquement le logging en
fonction des fichiers de configuration disponibles dans le classpath.

Si Logback est disponible, Spring Boot I’utilisera comme gestionnaire de logs. Vous pouvez facilement
configurer les niveaux de logging dans le fichier application.properties, sans avoir a créer des
fichiers spécifiques au fournisseur de logging comme logback.xml ou log4j.properties.

logging.level.org.springframework.web=INFO
logging.level.org.hibernate=ERROR
logging.level.com.mycompany=DEBUG

Si vous souhaitez enregistrer les logs dans un fichier en plus de la console, vous pouvez spécifier le nom
du fichier comme suit : logging.path=/var/logs/app.log ou logging.file=myapp.log.

Pour avoir un contréle plus fin sur la configuration du logging, vous pouvez créer les fichiers spécifiques
au fournisseur de logging dans leurs emplacements par défaut, que Spring Boot utilisera
automatiquement.

Si vous souhaitez utiliser d’autres bibliothéques de logging, comme Log4J ou Log4j2, au lieu de
Logback, vous pouvez exclure spring-boot-starter-logging et inclure le starter correspondant,
comme suit :

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
<exclusions>
<exclusion>
<groupId>org.springframework.boot</groupIld>
<artifactId>spring-boot-starter-logging</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>

37

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-logd4j</artifactId>
</dependency>

Externalisation des Propriétés de Configuration

En général, vous voudrez externaliser les paramétres de configuration dans des fichiers de propriétés ou
XML séparés, plutdt que de les intégrer directement dans le code, afin de pouvoir les modifier facilement
selon I’environnement de 1’application. Spring fournit 1’annotation @PropertySource pour spécifier la liste
des fichiers de configuration. Spring Boot va plus loin en enregistrant automatiquement un bean
PropertyPlaceholderConfigurer en utilisant le fichier application.properties situé par défaut a la racine du
classpath. Vous pouvez également créer des fichiers de configuration spécifiques a un profil en utilisant le
nom de fichier application-{profil}.properties. Par exemple, vous pouvez avoir application.properties pour
les valeurs par défaut, application-dev.properties pour le profil dev et application-prod.properties pour le
profil production. Si vous souhaitez configurer des propriétés communes a tous les profils, vous pouvez
les placer dans application-default.properties.

[J Note : vous pouvez également utiliser des fichiers YAML (.yml) comme alternative aux
fichiers .properties. Voir la section « Using YAML instead of properties » dans la
documentation officielle de Spring Boot : Spring Boot Reference

Spring fournit I’annotation @Value pour lier une valeur de propriété a une propriété d’un bean. Cependant,
lier chaque propriété individuellement avec @Value peut étre fastidieux. C’est pourquoi Spring Boot a
introduit un mécanisme permettant de lier automatiquement un ensemble de propriétés aux propriétés d’un
bean de maniére type-safe.

Supposons que vous ayez le fichier application.properties suivant et une classe DataSourceConfig comme
suit :

jdbc.driver=com.mysql.jdbc.Driver
jdbc.url=jdbc:mysql:
jdbc.username=root
jdbc.password=secret

public class DataSourceConfig {
private String driver;
private String url;
private String username;
private String password;

38

http://docs.spring.io/spring-boot/%20docs/current/reference/htmlsingle/#boot-features-external-config-yaml.
http://docs.spring.io/spring-boot/%20docs/current/reference/htmlsingle/#boot-features-external-config-yaml.

Vous pouvez maintenant simplement annoter DataSourceConfig avec
@ConfigurationProperties(prefix="jdbc") pour lier automatiquement toutes les propriétés commencant
par jdbc.*.

@Component
@ConfigurationProperties(prefix="jdbc")
public class DataSourceConfig {

Vous pouvez ensuite injecter le bean DataSourceConfig dans d’autres beans Spring et accéder aux
propriétés via les getters.

Les noms des propriétés du bean n’ont pas besoin d’étre exactement identiques aux clés des propriétés.
Spring Boot prend en charge le relaxed binding, ce qui signifie que la propriété du bean driverClassName
peut €tre mappée a n’importe laquelle des clés suivantes : driverClassName, driver-class-name, ou
DRIVER_CLASS NAME.

Developer Tools

Pendant le développement, il est souvent nécessaire de modifier le code et de redémarrer le serveur pour
que ces changements soient pris en compte. Spring Boot facilite ce processus grace au module spring-boot-
devtools, qui offre notamment un redémarrage rapide de I’application dés qu’une modification du classpath
est détectée. Lorsque ce module est inclus, la mise en cache des templates de vues (Thymeleaf, Velocity,
Freemarker, etc.) est automatiquement désactivée, permettant de visualiser immédiatement les changements
effectués. Les propriétés configurées par défaut peuvent &Etre consultées dans la classe
org.springframework.boot.devtools.env.DevToolsPropertyDefaultsPostProcessor.

L’intégration du module se fait simplement via la dépendance suivante :

<dependency>
<groupId>org.springframework.boot</groupIld>
<artifactId>spring-boot-devtools</artifactId>
<optional>true</optional>

</dependency>

Spring Boot developer tools déclenchent ainsi automatiquement le redémarrage de I’application a
chaque modification du contenu du classpath.

Lorsque vous modifiez des classes ou des fichiers de configuration situés dans le classpath, Spring Boot

redémarre automatiquement le serveur. En revanche, les ressources statiques comme les fichiers CSS, JS

39

ou HTML ne déclenchent pas de redémarrage. C’est pourquoi elles sont exclues par défaut dans la
propriété suivante définie dans DevToolsProperties :

(prefix = "spring.devtools")
public class DevToolsProperties {

public static class Restart {
private static final String DEFAULT_RESTART_EXCLUDES =
"META-INF/maven/** "
+ "META-INF/resources/**,resources/**,6"
+ "static/**,public/**,templates/**,"

+ "**/*Test.class,**/*Tests.class,git.properties,
META-INF/build-info.properties ";

private String exclude = DEFAULT_RESTART_EXCLUDES;

Vous pouvez remplacer cette liste d’exclusions via: spring.devtools.restart.exclude=assets/**,resources/**

Ou ajouter des exclusions ou chemins supplémentaires : spring.devtools.restart.additional-
exclude=assets/** setup-instructions/** :
spring.devtools.restart.additional-paths=D:/global-overrides/

Lorsque vous devez effectuer plusieurs modifications avant de tester une fonctionnalité, le redémarrage
automatique a chaque changement peut devenir génant. Il est alors possible d’utiliser un fichier déclencheur
grice a spring.devtools.restart.trigger-file=restart.txt.

Le mécanisme de redémarrage s’appuie sur deux classloaders : un classloader de base pour les classes qui
ne changent pas (issues des dépendances externes), et un classloader de redémarrage pour les classes de
votre application. Lors d’un redémarrage, seul ce dernier est recréé, ce qui accélére significativement le
processus. Vous pouvez désactiver le redémarrage automatique avec :spring.devtools.restart.enabled=false.
Ou le désactiver compleétement en le passant comme propriété systéme java -jar -
Dspring.devtools.restart.enabled=false app.jar

Enfin, pour utiliser les mémes réglages devtools sur plusieurs projets, il est possible de créer un fichier

global sprint-boot-devtools.properties dans le répertoire utilisateur (C:\Users\<username>\ sous Windows ou
/home/<username>/ sous Linux/MacOS).

40

Chapitre 4. Développement d'Applications
Web avec Spring MVC

Dans ce chapitre, nous allons explorer la maniére dont Spring Boot implémente le mod¢le architectural
Modele-Vue-Controleur (MVC) a travers son module Spring Web MVC, dédi¢ au développement
d’applications Web et d’APIs Web. Il couvre les concepts fondamentaux de la gestion des requétes et des
réponses, ainsi que les mécanismes de validation de données.

4.1 Architecture MVC et Contexte Spring Web

Le module Spring Web MVC est l'outil de Spring pour la construction de l'interface utilisateur et de
l'interface d'API. Bien que le nom référe au modéle MVC classique, son application est adaptée pour les
APIs Web, ou la Vue est remplacée par la sérialisation de données.

Controller Service

Browser

ISP

Thymeleaf

Figure 4-1. Structure d'une Application Web JEE/Spring Boot
Le Modele MVC : Principes et Responsabilités

Le modele MVC (Modele Vue Controleur) est un patron d'architecture pour guider la conception
d’applications nécessitant une interaction de 1’utilisateur avec le systéme. Il définit trois grandes catégories
de responsabilité :

e Modéle (Model) : Les classes appartenant a cette catégorie définissent les données applicatives
(objets Java) échangées entre 'utilisateur et le systéme ou les données a afficher.

e Vue (View) : Les classes appartenant a cette catégorie gérent la représentation graphique des
données et I’interface utilisateur. Spring Web MVC permet 1’utilisation de différentes
technologies de vues comme Thymeleaf (le moteur recommand¢) ou JSP.

e Controleur (Controller) : Les classes appartenant a cette catégorie gérent les interactions de
l'utilisateur (requétes HTTP), valident les paramétres et assurent la cohérence entre le modéle et
la vue apres traitement par la couche de service.

41

Intégration de Spring Web MVC et Role du Serveur

Spring Web MVC nécessite un conteneur Web léger pour traiter les requétes HTTP, car le Spring
Framework lui-méme ne fournit pas de serveur.

e Approche Spring Boot : Grace a Spring Boot, 1'application embarque son propre conteneur Web
(comme Tomcat ou Jetty). Cela simplifie l'intégration et le déploiement par rapport aux serveurs
d'applications Java EE complets.

e Le Contréleur dans le Flux : Dans la logique MVC, l'utilisateur interagit avec le Contréleur (via
une requéte HTTP). Ce controleur est chargé de valider les paramétres de la requéte, de les
transmettre a la couche de service pour traitement, puis d'alimenter le modéle pour le transmettre
ala vue.

4.2 Controllers

Les controleurs sont des composants centraux qui gerent les interactions entre le client et la logique
métier. Spring utilise des annotations spécifiques pour définir et configurer ces classes.

@RestController vs @Controller

e (@Controller est l'annotation standard utilisée pour les controleurs dans les applications
traditionnelles basées sur les vues
=> Le but est de générer et de retourner le nom logique d'une Vue (par exemple, un fichier
HTML via Thymeleaf ou JSP) pour l'affichage par le navigateur.
e @RestController est I'annotation privilégiée pour la création d'APIs RESTful.
= C'est une annotation qui combine les fonctionnalités de @Controller et de @ResponseBody,
cette combinaison permet d'indiquer a Spring que la valeur de retour de la méthode ne doit pas étre
interprétée comme le nom d'une vue, mais doit étre sérialisée directement dans le corps de la
réponse HTTP ,généralement au format JSON.

Mapping des Requétes
Les annotations de mapping sont utilisées pour associer une méthode de contréleur a une URL et a une
méthode HTTP spécifiques :

Annotation Méthode HTTP Réle
@GetMapping Récupération de données.
@PostMapping Création de nouvelles ressources.
@PutMapping Modification compléte d'une ressource.

@DeleteMapping Suppression d'une ressource.

Figure 4- 2.Tableau sur les variantes de @RequestMapping

42

e Exemple de Contréleur (Utilisation pour les APIs RESTful)

@RestController
@RequestMapping("/api/produits™)
publicclass ProduitController {

@GetMapping
public List<Produit> getAllProducts() {

return service.findAll();

}

@PostMapping
public Produit createProduct(@RequestBody Produit nouveauProduit) {

return service.save(nouveauProduit);

}
Code 4-1. Exemple de contréleur
Gestion des Paramétres et du Path

Spring permet de lier des parties de la requéte HTTP aux arguments des méthodes du contrdleur :

e (@PathVariable : permet d’extrairedesvaleurs dynamiques directement d'une partie de 'URL.
e (@RequestParam : permet d’extrairedesparamétresderequéte qui suivent le point
d'interrogationdansI'URL (parexemple,/produits?page=1).
> Exemple de @PathVariable (Extraction de 1'ID)

@GetMapping("/{id}")
public Produit getProductById(@PathVariable Long id) {

return service.findById(id);
H
Code 4-2. Exemple utilisation de PathVariable

4.3 Création d'APIs RESTful

Le développement d'API suit les principes de 'architecture REST (Representational State Transfer) pour
une communication standardisée et stateless.

Principes REST

Une API RESTful modélise les données sous forme de ressources accessibles via des URI. Les
interactions sont sans état (stateless), et l'interface est uniforme, s'appuyant sur les méthodes HTTP
standard.

43

HTTP Methods et Codes de Statut
Les Codes de Statut HTTP sont fondamentaux pour le développement d'APIs RESTful, car ils
normalisent la communication du résultat d'une requéte au client.

T T T

Successfully retrieved resource

201 Created A new resource was created

204 No Content Request has nothing to return

301/ 302 Moved Moved to another location (redirect)

400 Bad Request Invalid request / syntax error

401 / 403 Unauthorized Authentication failed / Access denied

404 Not Found Invalid resource was requested

409 Conflict Conflict was detected, e.g. duplicated email
500 / 503 Server Error Internal server error / Service unavailable

Figure 4-3.Codes de statut HTTP
Ces codes sont divisés en classes principales :

% 2xx (Succes) : Indiquent que la requéte a été traitée avec succes (ex: 200 OK, 201 Created).
#* 4xx (Erreur Client) : Signalent une erreur de la part du client (ex: 400 Bad Request pour une

validation échouée, 404 Not Found).
+%* 5xx (Erreur Serveur) : Indiquent une défaillance du serveur (ex: 500 Internal Server Error).

Pour définir et retourner explicitement ces statuts et assurer la conformité du protocole REST, on utilise
la classeResponseEntity dansSpring.

Annotations de Gestion des Données
e (@RequestBody : Mappe le corps de la requéte HTTP (généralement JSON/XML) vers un objet
Java.

e (@ResponseBody : Indique que la valeur de retour doit étre sérialisée dans le corps de la réponse.
(Implicitement inclus avec @RestController).

4.4 Gestion des Réponses

Pour construire une API professionnelle, il faut controler précisément le contenu et les métadonnées
(statut) des réponses.

ResponseEntity et Personnalisation des Réponses

La classe ResponseEntity permet d'envelopper 1'objet de réponse pour contrdler explicitement les
en-tétes HTTP et le code de statut, assurant une communication REST conforme.

44

> Exemple d'utilisation de ResponseEntity

publicResponseEntity<Produit> getSecuredProduct(Long id) {
Produitp=service.findById(id);
if(p==null) {

returnnew ResponseEntity<>(HttpStatus.NOT_FOUND);
}

returnnewResponseEntity<>(p, HttpStatus.OK);
}
Code 4-3. Exemple utilisation de ResponseEntity

Content Negotiation (JSON, XML)

Boot gére la négociation de contenu, qui détermine le format de la réponse (JSON, XML, etc.) en fonction
des en-tétes de la requéte client (notamment l'en-téte Accept). La sérialisation en JSON via la librairie
Jackson est Spring le comportement par défaut pour les APIs REST.

4.5 Validation des Données

La validation des données est nécessaire pour garantir l'intégrité des informations avant leur traitement
ou leur persistance.

Bean Validation (JSR-380)

Spring utilise les spécifications de Bean Validation (JSR-380), permettant de définir des contraintes
déclaratives directement sur les champs des objets Java.

Annotations de Validation

Les contraintes sont définies a 1'aide d'annotations :

e @NotNull / @NotEmpty / @NotBlank : Vérifie I'absence de valeur nulle, de chaine vide,..
® (@Size(min=x, max=y) : Limite la taille d'une chaine ou d'une collection.

e (@Min(value=x) / @Max(value=x) : Limite la valeur numérique.

® @Email : Valide le format de l'adresse e-mail.

> Exemple de Bean (DTO) avec Annotations de Validation

public class ProduitDTO {

@NotNull(message = "Le nom ne peut pas étre nul.")
@Size(min = 3, max = 50, message = "Le nom doit contenir entre 3 et 50

caracteres.")
private String nom;

45

@Min(value = 10, message = "Le prix doit étre au moins de 10.")
private double prix;

}

Code 4-4. Exemple de Bean avec Annotations de Validation

Gestion des Erreurs de Validation
L'annotation @Valid ou @Validated placée devant le DTO dans le contrdleur déclenche le processus de
validation. En cas d'échec, Spring léve une exception.

e Implémentation : Il est recommandé d'utiliser une classe annotée avec @ControllerAdvice pour
intercepter l'exception (MethodArgumentNotValidException) et formater une réponse 400 Bad
Request contenant une liste détaillée deserreurs pour le client.

> Exemple d'utilisation de @Valid

@PostMapping("/validate")
//@Valid déclenche La vérification des contraintes définies dans ProduitDTO
public ResponseEntity<Produit> createValidProduct(@valid @RequestBody
ProduitDTO produitDTO) {
// Le code n'est exécuté que si la validation est réussie
// L'appel au service de création
return new ResponseEntity<>(produitDTO.toProduit(), HttpStatus.CREATED);

}
Code 4-5. Exemple d'utilisation de @Valid

46

Chapitre S. Persistance des Données avec
Spring Data JPA

5.1 C’est quoi Spring Data ?

Dans 1'écosystéme Spring, la gestion de la persistance des données est grandement simplifiée par le
projet Spring Data. Il s'agit d'un framework de haut niveau dont I'objectif principal est d'unifier et de
faciliter 'accés a diverses sources de données, qu'il s'agisse de bases de données relationnelles, NoSQL,
ou de systemes de recherche. Sa philosophie est de réduire au maximum le code répétitif (boilerplate)
traditionnellement nécessaire pour écrire la couche d'accés aux données, permettant ainsi aux
développeurs de se concentrer sur la logique métier.

Spring Data adopte une approche modulaire selon la technologie de persistance utilisée. Ainsi, nous
trouvons des modules spécialisés tels que Spring Data JDBC pour les acces directs via JDBC, Spring
Data MongoDB pour les bases NoSQL document, Spring Data Redis pour les bases clé-valeur, Spring
Data Elasticsearch pour les moteurs de recherche, ou encore Spring Data Neo4j pour les bases de
données orientées graphes. Chaque module respecte un ensemble de contrats communs, offrant une
expérience de développement cohérente quelle que soit la technologie sous-jacente.

Pour interagir avec les bases de données relationnelles, qui sont au cceur de nombreuses applications,
Spring Data propose le module Spring Data JPA. Ce module s'appuie sur la norme établie dans le monde
Java pour la persistance : la JPA (Java Persistence API). JPA est une spécification qui définit un cadre
pour le mapping objet-relationnel (ORM), c'est-a-dire la technique qui permet de faire correspondre les
objets de notre application aux tables d'une base de données. Des outils comme Hibernate sont des
implémentations concrétes de cette spécification.

Spring Data is a high-level
layer that simplifies the
persistence implementation

by unifying the various
technologies under the same
abstractions.
Spring App Logic
\\\\
o,
N Spring Data
. Some other
Hibernate :
JDBC daies MongoDB NeodJ persistence
technology

5-1 Hlustration. Modules de Spring Data

47

La véritable puissance de Spring Data JPA réside dans son abstraction des Repositories (référentiels).
Plut6t que d'écrire manuellement des classes d'accés aux données (DAO), le développeur se contente de
définir une interface. A partir de cette simple interface, Spring Data est capable de générer dynamiquement
une implémentation compléte fournissant les opérations de base (CRUD - Create, Read, Update, Delete)
ainsi que des requétes plus complexes dérivées simplement du nom des méthodes. Cette approche
déclarative sera au centre de notre étude dans ce chapitre

5.2 Introduction a JPA et Hibernate

ORM : conceptsetavantages
Le mapping objet-relationnel (ORM) résout l'une des problématiques fondamentales du développement
d'applications : le décalage d'impédance entre le modéle objet utilisé dans les langages de programmation et
le modéle relationnel des bases de données. Cette technique permet de manipuler les données sous forme
d'objets Java tout en bénéficiant de la robustesse et des performances des bases de données relationnelles.
Les principaux avantages de I'ORM incluent :

+%* Abstraction de la base de données : Le développeur travaille avec des objets Java plutdt qu'avec

du SQL brut
+* Portabilité : Le méme code peut fonctionner avec différents SGBD (MySQL, PostgreSQL,

Oracle, etc.)
+¢* Productivité accrue : Réduction significative du code de persistance manuel
+* Gestion automatique des relations : Mapping transparent des associations entre entités
+$* Optimisations intégrées : Lazy loading, cache de premier et second niveau, regroupement de

requétes
JPA comme spécification, Hibernate comme implémentation

JPA (Java Persistence API) est une spécification Java EE qui standardise les concepts ORM. Elle définit un
ensemble d'annotations (@Entity, @Table, @Column), d'APls (EntityManager, Query) et de comportements
que toute implémentation doit respecter. JPA ne fournit pas de code exécutable, mais plutdt un contrat que
les fournisseurs d'ORM doivent implémenter.

Hibernate est I'implémentation de référence de JPA, développée par Red Hat. 1l s'agit d'un framework
ORM mature qui existait bien avant la spécification JPA et qui a largement inspiré cette derniere.
Hibernate fournit :

+* Une implémentation compléte et performante de JPA

+* Des fonctionnalités étendues au-dela de la spécification (Criteria API native, types
personnalisés, etc.)

+%* Un moteur de requétes HQL (Hibernate Query Language) particuliérement puissant

+%* Des mécanismes avancés de cache et d'optimisation

Dans Spring Boot, Hibernate est automatiquement configuré comme implémentation JPA par défaut via
le starter spring-boot-starter-data-jpa. Cette configuration transparente permet aux développeurs de

48

bénéficier immédiatement de toute la puissance d'Hibernate tout en respectant les standards JPA,
garantissant ainsi la portabilité¢ de leur code.

Configuration de la base de données

L'une des forces de Spring Boot réside dans sa capacité a simplifier drastiquement la configuration de la
persistance. Grice a son principe d'auto-configuration, Spring Boot peut détecter automatiquement les
dépendances présentes dans le classpath et configurer la base de données en conséquence, pour travailler
avec spring data jpa il faut ajouter la dépendance suivante:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

> Base de données H2

La base de données H2 est un systéme de gestion de bases de données relationnelles (SGBDR) open
source, léger, entierement écrit en Java. Elle est principalement utilisée en mode "embarqué" (intégrée
directement dans I'application) ou "en mémoire" in-memory pour offrir des performances trés rapides.
Grace a son faible encombrement et sa conformité a I'API JDBC standard, H2 est particuliérement
appréciée pour les phases de développement, le prototypage rapide et, surtout, les tests automatisés dans
les applications Java, notamment celles basées sur le framework Spring Boot. Elle propose également
une console web intégrée accessible via /h2-console, permettant d'exécuter des requétes SQL directement
depuis le navigateur.. Pour l'utiliser, il suffit d'ajouter la dépendance :

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<scope>runtime</scope>
</dependency>

Configuration H2 dans application.properties :

Par défaut, Spring Boot configure automatiquement une base de données H2 en mémoire si la dépendance
est présente et qu'aucune autre source de données n'est configurée. Vous pouvez personnaliser ce
comportement dans le fichier src/main/resources/application.properties :

H2 In-Memory Configuration
spring.datasource.url=jdbc:h2:mem:testdb
spring.datasource.driver-class-name=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=

Activation de la console web H2

49

spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

spring.datasource.driver-class-name spécifie le pilote Java correct, tandis que
spring.datasource.url définitl'adresseetle mode de fonctionnement (en mémoire) de la base de
données.

Configuration JPA/Hibernate (optionnel)

Pour gérer la création et les mises a jour du schéma de base de données par Hibernate pendant le
développement, vous pouvez configurer spring.jpa.hibernate.ddl-auto contrdle la maniére dont le schéma de
la base de données est automatiquement généré ou mis a jour au démarrage de 'application, Pour les bases
de données embarquées (comme H2, HSQLDB, ou Derby), la valeur par défaut est create-drop. L'affichage
des requétes SQL est activé avec spring.jpa.show-sql=true et spring.jpa.properties.hibernate.format sql
formate les requétes SQL pour une meilleure
lisibilité :

Configuration JPA/Hibernate

spring.jpa.database-platform=org.hibernate.dialect.H2Dialect

spring.jpa.hibernate.ddl-auto=create-drop
spring.jpa.show-sql=true

> Base de données MySQL

MySQL est I'un des SGBD relationnels les plus populaires en entreprise. Pour I'intégrer a Spring Boot :

<dependency>
<groupId>com.mysql</groupId>
<artifactId>mysql-connector-j</artifactId>
<scope>runtime</scope>

</dependency>

Configuration MySQL dans application.properties :

Configuration de la source de données MySQL
spring.datasource.url=jdbc:mysql:

spring.datasource.username=votre_utilisateur
spring.datasource.password=votre_mot_de_passe

Spécifie explicitement la classe du pilote MySQL
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

Configuration JPA/Hibernate (facultatif mais recommandé)
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true

50

http://com.mysql.cj/
http://com.mysql.cj/

spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQLDialect

** spring.datasource.url : L'URL inclut I'héte (localhost si c'est sur votre machine), le port par défaut
de MySQL (3306), et le nom de la base de données (votre nom de base de donnees) que vous
devez avoir préalablement créée.

#}» spring.datasource.username et spring.datasource.password : Les
identifiants de

+% connexion a votre base de données. spring.datasource.driver-class-name : Le nom de la classe du
pilote MySQL moderne.

2o spring.jpa.hibernate.ddl-auto : Pour MySQL, la valeur par défaut de Spring Boot est

none en production.

> Base de données PostegreSQL

La configuration de PostgreSQL suit le méme principe que MySQL. Son intégration nécessite 1’ajout du
connecteur JDBC pour PostgreSQL dans pom.xml :

<dependency>
<groupId>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
<scope>runtime</scope>
</dependency>

ConfigurationPostgreSQLdansapplication.properties :
Remplacez les propriétés MySQL ou H2 par celles de PostgreSQL dans src/main/resources/
application.properties :

Configuration de la source de données PostgreSQL
spring.datasource.url=jdbc:postgresql://localhost:5432/votre_nom de base_de_donnees
spring.datasource.username=votre_utilisateur
spring.datasource.password=votre_mot_de_passe

Spécifie explicitement la classe du pilote (souvent facultatif avec Spring Boot)
spring.datasource.driver-class-name=org.postgresql.Driver

Configuration JPA/Hibernate (facultatif mais recommandé)
spring.jpa.hibernate.ddl-auto=update

spring.jpa.show-sql=true
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect

< spring.datasource.url : Utilise le format jdbc:postgresql://[hote]:[port]/[base de données].
Le port par défaut est 5432.

51

o spring.datasource.driver-class-name : La classe du pilote standard pour PostgreSQL est
org.postgresql.Driver.

** spring.jpa.properties.hibernate.dialect : Bien que Spring Boot puisse
souvent le
déduire automatiquement, spécifier le dialecte org.hibernate.dialect.PostgreSQLDialect permet a

Hibernate de générer le SQL le plus optimisé pour PostgreSQL.
Entités JPA

Une entité est une simple classe Java (POJO - Plain Old Java Object) dont les instances correspondent a
des lignes dans une table de base de données. Le mapping entre la classe et la table est réalis¢ a l'aide
d'annotations.

Mapping objet-relationnel (@Entity, @Table, @Column)

Les annotations de base permettent de déclarer une classe comme une entité et de personnaliser son
mapping avec la structure de la base de données.

+¢* @Entity : C'est 'annotation fondamentale qui marque une classe comme étant une entité JPA.
Elle signale au provider de persistance (Hibernate) que cette classe doit étre gérée et que ses
objets peuvent étre stockés en base de données.
% @Id: Cette annotation est placée sur le champ qui sert de clé primaire.
+* @GeneratedValue : Combinée avec @Id, cette annotation spécifie la stratégie de génération de
la clé primaire. Les stratégies les plus courantes (GenerationType) sont :
m IDENTITY : S'appuie sur une colonne auto-incrémentée de la base de données .
m SEQUENCE : Utilise une séquence de base de données pour générer la valeur .
m AUTO : (Défaut) Laisse le provider de persistance (Hibernate) choisir la stratégie
la plus appropriée en fonction du dialecte de la base de données.

Exemple de classe marquée comme une entité JPA

import javax.persistence.Entity; import
javax.persistence.GeneratedValue; import
javax.persistence.GenerationType; import
javax.persistence.Id;

public class Employee {

(strategy =
GenerationType.AUTO) private 1long id; private
String name; private String city;

public Employee() {
}

52

public Employee(String name, String city) {
this.name = name;
this.city = city;

}
//getters et setters

}

Comme aucune annotation @Table n’existe, il suppose que cette entité est mappée a une table nommée
Employee.

+s* @Table : Optionnelle, cette annotation permet de spécifier les détails de la table a laquelle I'entité
est mappée. Par défaut, le nom de la table est le nom de la classe. On 'utilise principalement pour
définir un nom de table différent (name), un schéma (schema), ou des contraintes d'unicité.

s @Column : Appliquée sur un champ de 'entité, cette annotation permet de personnaliser le
mapping avec la colonne correspondante. On peut spécifier son nom (name), sa longueur (length),

si elle peut étre nulle (nullable), ou si sa valeur doit étre unique (unique).

Exemple avec @Table et @Column

import javax.persistence.*;

(name = "produits")
public class Produit {

(strategy = GenerationType.AUTO)
private long id;

(name = "nom_produit", nullable = false, length = 100)
private String nom;

(length = 500)
private String description;

private double prix;

-

Relations entre entités

L'un des plus grands atouts de JPA est sa capacité a modéliser les relations entre les tables directement
dans le code objet.

53

@ManyToOne (Plusieurs-a-Un) : C'est la relation la plus commune. Par exemple, plusieurs produits
(many) appartiennent a une seule catégorie (one). C'est généralement le c6té "propriétaire” de la relation,
celui qui porte la colonne de clé étrangére.

@OneToMany (Un-a-Plusieurs) : C'est le coté inverse de la relation @ManyToOne. Une catégorie

(one) peut avoir une collection de produits (many). On utilise 1'attribut mappedBy pour indiquer que la
relation est gérée par l'autre entité, évitant ainsi la redondance.

@ManyToMany (Plusieurs-a-Plusieurs) : Modélise une relation ou une instance d'une entité peut étre
associée a plusieurs instances d'une autre, et vice-versa (par exemple, des produits et des commandes).
JPA gére cette relation en utilisant une table de jonction.

Exemple de relation OneToMany / ManyToOne : une catégorie et plusieurs produits

(name = "produits") public class
Produit { (fetch = FetchType.LAZY)
(name = "categorie_id")

private Categorie categorie;

(name = "categories")
public class Categorie {

(strategy = GenerationType.IDENTITY)
private Long id;
private String nom;

(mappedBy = "categorie", cascade = CascadeType.ALL, orphanRemoval =
true)
private List<Produit> produits = new ArrayList<>();

—

Repositories Spring Data

Spring Data s’organise autour de la notion de repository. Il fournit une interface marqueur générique
Repository<T, ID>. Le type T correspond au type de l’objet géré par le repository. Le type ID
correspond au type de la clé d’un objet.

54

https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html

L’interface CrudRepository<T, ID> hérite de Repository<T, ID> et fournit un ensemble d’opérations
¢lémentaires pour la manipulation des objets.

Spring Data JPA fournit I’interface JpaRepository<T, ID> qui hérite de CrudRepository<T, ID> et qui
fournit un ensemble de méthodes plus spécifiquement adaptées pour interagir avec une base de données
relationnelle.

Pour définir un repository, il suffit de créer une interface qui hérite d’une des interfaces ci-dessus.

Exemple de Repository pour [’entité Produit

import org.springframework.data.jpa.repository.JpaRepository;

public interface ProduitRepository extends JpaRepository<Product, Long> {

}

En déclarant simplement cette interface, Spring Boot va automatiquement détecter ProduitRepository,
comprendre qu'il doit la gérer, et créer a l'exécution un bean qui implémente toutes les méthodes de
JpaRepository.

Méthodes CRUD automatiques

En héritant de JpaRepository (qui hérite elle-méme CrudRepository), ProduitRepository dispose
instantanément d'un ensemble complet de méthodes pour les opérations CRUD de base, sans écrire une seule
ligne d'implémentation :

+%* save(Produit produit) : Sauvegarde un nouveau produit ou met a jour un produit existant.

+* findByld(Long id) : Récupére un produit par sa clé primaire. Renvoie un Optional<Produit>.
+%* findAll() : Renvoie la liste de tous les produits.

+* deleteById(Long id) : Supprime un produit par sa clé primaire.

+%* count() : Compte le nombre total de produits.

+% existsByld(Long id) : Vérifie si un produit avec cet ID existe.

Ajout de méthodes dans une interface de repository

L’interface JpaRepository<T, ID> déclare beaucoup de méthodes mais elles suffisent rarement pour
implémenter les fonctionnalités attendues d’une application. Spring Data JPA utilise une convention de
nommage pour générer automatiquement le code sous-jacent et exécuter la requéte. La requéte est déduite de
la signature de la méthode (on parle de query methods).

La convention est la suivante : Spring Data JPA supprime du début de la méthode les préfixes find,
findAll, read, query, count et get et recherche la présence du mot By pour marquer le début des critéres de
filtre. Le terme aprés By fait référence a un attribut de I’entité JPA pour lequel on veut appliquer un filtre.
Chaque critére doit correspondre a un parameétre de la méthode en respectant 1’ordre.

55

https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html
https://docs.spring.io/spring-data/jpa/docs/current/reference/html
https://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/JpaRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html
https://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/JpaRepository.html
https://docs.spring.io/spring-data/jpa/docs/current/reference/html
https://docs.spring.io/spring-data/jpa/docs/current/reference/html

Exemple de méthodes a ajouter dans ProduitRepository
public interface ProduitRepository extends JpaRepository<Produit, Long> {

// SELECT p FROM Produit p WHERE p.nom = ?1
Optional<Produit> findByNom(String nom);

// SELECT p FROM Produit p WHERE p.prix < ?1
List<Produit> findByPrixLessThan(double prixMax);

// SELECT p FROM Produit p WHERE p.nom LIKE %?1%
List<Produit> findByNomContainingIgnoreCase(String keyword);

// SELECT p FROM Produit p WHERE p.categorie.nom = ?1
List<Produit> findByCategorieNom(String nomCategorie);

Spring Data JPA générera une implémentation pour chaque méthode de ce repository.
Requétes personnalisées

Lorsque les conventions de nommage ne suffisent pas pour des requétes plus complexes (impliquant des
jointures spécifiques, des agrégations ou des sous-requétes), Spring Data permet d'écrire des requétes

personnalisées a l'aide de I'annotation @Query.

On peut écrire la requéte en JPQL (Java Persistence Query Language), qui est similaire au SQL mais
opére sur les entités et leurs propriétés.

Exemple avec JPOL et des paramétres nommeés .

import org.springframework.data.repository.query.Param;

public interface ProduitRepository extends JpaRepository<Produit, Long> {
@Query("SELECT p FROM Produit p WHERE p.categorie.id = :catId AND p.prix>
:prixMin™)
List<Produit> findProduitsChersDansCategorie(
@Param("catId") Long categorield,
@Param("prixMin") double prixMinimum

)5}

I1 est également possible d'exécuter des requétes SQL natives en ajoutant l'attribut nativeQuery = true.
C'est utile pour exploiter des fonctionnalités spécifiques a une base de données.

@uery(
value = "SELECT * FROM produits p JOIN categories c ON p.categorie_id = c.id

56

https://docs.spring.io/spring-data/jpa/docs/current/reference/html

WHERE c.nom = ?1",
nativeQuery = true)
List<Produit> findByCategorieNomNative(String nomCategorie);

Grace aux repositories, la couche d'accés aux données devient a la fois simple, puissante et extrémement
productive.

La notion de transaction est fondamentale dans les systémes d’information. Une transaction respecte
quatre propriétés désignées par I’acronyme ACID (Atomicité, Cohérence, Isolation, Durabilité). Elle est

définie par un début et une fin : soit une validation des modifications (commit), soit une annulation
(rollback).

La démarcation transactionnelle dans la couche Service

On parle de démarcation transactionnelle pour désigner la portion de code qui doit s’exécuter comme un
bloc unique. Dans une architecture multi-couches, la couche de service (ou couche métier) est 1'endroit idéal
pour cette démarcation. En effet, une méthode de service représente souvent une fonctionnalité compléte qui
peut nécessiter plusieurs opérations sur la base de données. Ces opérations doivent réussir ou échouer en
bloc.

Par défaut, Spring Data JPA active les transactions sur chaque méthode des repositories. Cela signifie
qu'un appel a repository.save() est une transaction a lui seul. Cette configuration peut entrainer des
incohérences : si une méthode de service appelle deux méthodes save() et qu'une erreur survient apres le
premier appel, ce dernier ne sera pas annulé.

Pour des applications robustes, il est donc recommandé de désactiver ce comportement et de gérer les
transactions exclusivement au niveau de la couche de service.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

(enableDefaultTransactions = false)

public class MyApplication {

public static void main(String[] args) {
SpringApplication.run(MyApplication.class, args);

}

-

Une fois cette option désactivée, tout appel a une méthode de repository modifiant des données devra
obligatoirement &tre exécuté depuis un contexte transactionnel (comme une méthode de service annotée),
sous peine d'échouer.

57

Gestion transactionnelle avec @Transactional

L'annotation @TransactionaldeSpring, placée sur une méthode de service, demande a Spring
d'envelopper son exécution dansunetransaction :

+%* Si la méthode se terminesanserreur, Spring valide la transaction (commit).
+%* Si une RuntimeExceptionestlevée, Spring annule la transaction (rollback).

Exemple dans une couche Service:

import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import javax.persistence.EntityNotFoundException;

@Service
public class ProduitService {

private final ProduitRepository produitRepository;
public ProduitService(ProduitRepository produitRepository) {
this.produitRepository = produitRepository;

}

@Transactional
public void updateProduitPrice(Long produitId, double nouveauPrix) {
Produit produit = produitRepository.findById(produitId)
.orElseThrow(() -> new EntityNotFoundException("Produit non trouvé
avec 1'id : " + produitld));

if (nouveauPrix <= 0) {
thrownewIllegalArgumentException("Leprixdoitétrestrictementpositif.");

}

produit.setPrix(nouveauPrix);

// Pas besoin d'appeler produitRepository.save(produit).
// Dans une transaction, Hibernate surveille lLes changements sur les entités (dirty

checking)
// et propage automatiquement La mise a jour en base de données au moment du commit.
}

}

Avec @Transactional, l'opération de mise a jour du prix est atomique : soit elle réussit complétement,
soit elle est entierement annulée, garantissant ainsi l'intégrité des données.

58

Propagation et Isolation

L'annotation (@Transactional peut étre affinée avec des attributs :

Propagation (propagation)
Définit le comportement si une méthode transactionnelle en appelle une autre.

+%* REQUIRED (défaut) : La méthode rejoint la transaction existante ou en crée une nouvelle.

+s* REQUIRES NEW : Crée toujours une nouvelle transaction indépendante.
+* Autres : SUPPORTS, NOT_SUPPORTED, MANDATORY, NEVER

Isolation (isolation)

Définit le degré d'isolation d'une transaction par rapport aux autres.

+* READ_COMMITTED : Empéche la lecture de données non validées (défaut sur PostgreSQL,

Oracle).
+* REPEATABLE_READ : Empéche qu'une méme lecture donne des résultats différents dans la

méme transaction (défaut sur MySQL).
+* Autres : READ_ UNCOMMITTED, SERIALIZABLE

(propagation = Propagation.REQUIRES_NEW)
public void auditAction(String message) {

Conclusion

Ce chapitre a démontré I'efficacité de 1'écosystéme Spring pour la persistance des données. En nous
appuyant sur la norme JPA et son implémentation Hibernate, nous avons mis en place une couche de
mapping objet-relationnel robuste, dont la configuration est grandement simplifiée par Spring Boot.

L'atout majeur réside dans Spring Data JPA et son concept de Repositories. Grace a de simples

interfaces, nous avons obtenu une couche d'acces aux données compléte, incluant les opérations CRUD et
des requétes personnalisées, réduisant ainsi drastiquement le code a écrire.

Finalement, l'utilisation de @ Transactional au niveau de la couche de service a permis de garantir
l'intégrité et la cohérence des données via une gestion transactionnelle simple et déclarative.

En somme, Spring Data JPA offre une abstraction puissante qui accélére le développement de la couche

de persistance tout en assurant la fiabilité des opérations, permettant aux développeurs de se concentrer
sur la logique métier.

59

Chapitre 6. Sécurisation des Applications
avec Spring Security

La sécurité web constitue aujourd’hui un pilier fondamental du développement d’applications en ligne.
Avec I’évolution rapide des technologies et la montée en sophistication des cyberattaques, la protection des
données, la prévention des accés non autorisés et la sécurisation des échanges deviennent des exigences
incontournables. Les applications web modernes sont exposées a une multitude de risques : injections SQL,
attaques XSS, vols de session, CSRF, déni de service, phishing, qui peuvent compromettre la confidentialité,
I’intégrité et la disponibilité des systémes.

Comprendre les bases de la sécurité web, maitriser les concepts d’authentification et d’autorisation, et
adopter des pratiques robustes (HTTPS, encodage, gestion des sessions, validation des entrées...) sont des
¢étapes essentielles pour renforcer la résilience d’une application.

Dans ce contexte, les frameworks modernes offrent aux développeurs des mécanismes complets et
centralisés pour gérer la sécurité. C’est précisément le réle de Spring Security, un composant majeur de
I’écosystéme Spring, congu pour répondre efficacement aux besoins de protection des applications Java
EE et, plus particuliérement, des applications Spring Boot.

6.1 Qu’est ce que Spring Security?

Spring Security est un framework puissant, flexible et hautement personnalisable destiné a assurer la
sécurité des applications Java. Il fournit un ensemble complet de mécanismes pour gérer 1’authentification
(vérification de 1’identité de ’utilisateur) et I’autorisation (controle des permissions et des acces).

Initialement développé comme Acegi Security, il est aujourd’hui devenu la solution standard pour
sécuriser les applications Spring.

Contrairement a un pare-feu ou un systeme de surveillance réseau, Spring Security n’a pas pour réle de
bloquer les attaques au niveau infrastructurel ; il agit au niveau applicatif en filtrant les requétes HTTP, en
protégeant les méthodes sensibles, en gérant les sessions, 1’encodage des mots de passe, et en offrant une
protection native contre des attaques courantes (CSRF, XSS, fixation de session...).

Il peut s’intégrer a différents modes d’authentification : base de données, LDAP, authentification par
formulaires, OAuth2, SSO, JAAS, tokens JWT, etc., ce qui en fait un outil polyvalent et adapté aux
architectures modernes, y compris les microservices.

60

6.2 Comment Spring Boot simplifie I’utilisation de Spring Security?
Sans Spring Boot, la configuration de Spring Security nécessite plusieurs fichiers XML ou des classes
Java complexes pour définir les filtres, déclarer les beans, gérer les sessions, etc.

Spring Boot simplifie radicalement ce processus :

e [l auto-configure la chaine de sécurité (Security Filter Chain).
e |l génére un utilisateur par défaut avec un mot de passe temporaire.
e] protége automatiquement toutes les URLSs de 1’application.

e |l permet de personnaliser facilement la sécurité avec des annotations ou une simple classe Java.
6.3 Fonctionnement général

Avant d’entrer dans les détails techniques, il est essenticl de comprendre le fonctionnement global de
Spring Security dans une application Spring Boot. Lorsqu’un utilisateur envoie une requéte HTTP, celle-ci
ne parvient pas directement aux contrdleurs. Elle traverse d’abord un ensemble de filtres spécialisés
organisés dans ce qu’on appelle la Security Filter Chain. Ces filtres analysent la requéte, déterminent si
’utilisateur est authentifi¢, vérifient ses permissions et appliquent plusieurs protections de sécurité (CSRF,
sessions, en-tétes sécurisés...).

Spring Security agit donc comme une couche de défense placée avant la logique métier. Au lieu
d’éparpiller la sécurité dans toute I’application, le framework centralise la vérification des identités, des
roles et des droits d’accés. Ce modele est comparable a un checkpoint : aucune requéte ne passe sans étre
inspectée.

L’intérét de cette architecture réside dans son efficacité et sa modularité : chaque filtre est responsable
d’un aspect spécifique (authentification, autorisation, gestion des sessions...), ce qui permet au
développeur de personnaliser la sécurité sans complexifier le code métier.

Authenticalion
@
User entered f--- —Q— - =2 Awthentication f—--—-—-——-— = Authentication f-======== = Authentication
credentials fe= oo oo] Filter O —— Manager e ==] Provider
o) e) 7} , :
H 1 v
H i i
o LS 1O
; ! !
1 L H
hYd AV4 N
Securiby User Details Password
Context Service Encoder

Figure 6-1. Spring Security Flow
Ce schéma illustre de maniére simplifiée le processus complet d’authentification dans Spring Security.
Lorsque 'utilisateur saisit ses identifiants (1), ceux-ci sont d’abord interceptés par un Authentication

61

Filter. Ce filtre transforme les informations fournies en un objet Authentication ,(2) puis les transmet a
I’AuthenticationManager (3). L’AuthenticationManager délégue ensuite la vérification a un ou
plusieurs AuthenticationProvider (4), responsables de comparer les informations regues avec celles
stockées dans le systeme.

L’ AuthenticationProvider fait appel au UserDetailsService (5), qui récupére depuis la base de
données I’utilisateur correspondant, ainsi qu’au PasswordEncoder (6), qui vérifie que le mot de passe
saisi correspond au mot de passe haché enregistré. Si I’authentification est réussie, le provider renvoie un
objet Authentication complet contenant les roles et autorisations de 1’utilisateur (7—8). Cet objet est
alors stocké dans le SecurityContext (9), qui représente 1’état de sécurité actif pour la requéte et les
suivantes. Enfin, le filtre renvoie la main au navigateur ou au contréleur approprié (10).

Le schéma montre que Spring Security suit un processus structuré, modulable et enticrement basé sur

I’enchainement de composants spécialisés, permettant une authentification sécurisée sans disperser la
logique dans l'application.

6.4 Concepts Fondamentaux de Spring Security

Spring Security s’appuie sur plusieurs concepts essentiels qui lui permettent d’assurer une sécurité fine
et modulaire :

Security Filter Chain

La sécurité fournie par Spring Security repose sur un mécanisme fondamental du monde Java : les
filtres Servlet. Dans une application classique, chaque requéte HTTP envoyée par 1’utilisateur transite
d’abord par le conteneur web, puis par les Servlets chargés de la traiter.

Les filtres se situent précisément entre ces deux ¢léments : ils interceptent les requétes et les réponses, et
peuvent effectuer des opérations avant et apres le traitement du Servlet. Par exemple, un filtre peut afficher
un message avant ’exécution d’un Servlet, laisser passer la requéte via filterChain.doFilter(), puis effectuer
un traitement final aprés la réponse. Ce fonctionnement permet d’ajouter proprement des comportements
transversaux comme la journalisation, la vérification d’accés ou la transformation des données.

\ Comainer
| Filter

request
Browser .

ServietRequest
ServietResponse
Figure 6-2. Servlet Request and Response Flow

62

Considérons un filtre simple, nommé¢ FilterA, qui est mappé a toutes les URL (/*) et dont la

méthode doFilter() exécute la logique suivante :

1. Afficher un message "Starting Filter" (avant filterChain.doFilter()).

2. Laisser passer la requéte au reste de l'application (via filterChain.doFilter()).

3. Afficher un message "Ending Filter" (apres filterChain.doFilter() et le traitement du
Servlet).

Le diagramme ci-dessous illustre le flux de traitement pour une requéte HTTP GET /home interceptée
par ce filtre : Comme le montre 1'exemple, lorsqu'une requéte arrive, le conteneur l'intercepte et invoque
la méthode doFilter() du FilterA. L'exécution du filtre commence, affiche "Starting Filter", puis
filterChain.doFilter() est appelé. La requéte est ensuite traitée par la ressource demandée
(home.jsp), qui renvoie la réponse. L'exécution revient au FilterA, qui affiche ""Ending Filter"
avant que la réponse finale ne soit renvoyée au navigateur.

HTTP Request Processing STDOUT

SEs omis)ll FilterA | Starting Filter

request.getRequestDispatcher("fhome
Jjsp").forward(request, response);

m Starting Filter
OK :
& home. jsp Ending Filter

Figure 6-3.Java Servliet Filter Chaining with RequestDispatcher

Spring Security exploite ce principe pour mettre en place sa propre chaine de sécurité : la Security
Filter Chain . Celle-ci est composée d’un ensemble de filtres Java implémentant 1’interface
javax.servlet.Filter, exécutés dans un ordre strict défini par le framework.

| Browser HTTF Request I —_— | SecurityContextPersistenceFiiter l —_— | HeaderWriterFilter 1 —
[cartFiiter I B — | LogoutFilter I e | UsernamaPasswsrdAuthenticatsnFiiter] L
[DefaultboginPageGeneratingFilter I » [I egoutFaged atingFilter I —_ [BasicAuthenticationFilter] —
| RequestGacheAwareFilter I —p | SecurityContextHold erAwareRequestFilter l N | AnonymousAuthenticationFilter] R 3
[sessionmanagementFier | —— | ExceptionTransiationFilter | —» | FilterSecurityinterceptor | —»

[your @RestContraller’@Cantraller I

Figure 6-4.Order of Spring Security Filters

63

Le premier filtre qui décide si une requéte doit étre sécurisée est
le SecurityContextPersistenceFilter, chargé de restaurer le contexte de sécurité de I’utilisateur (roles,
informations d’authentification...). Ensuite, selon le type de requéte, différents filtres s’activent.

Chaque filtre joue un rdle bien précis dans la sécurisation de I’application. Certains, comme le
UsernamePasswordAuthenticationFilter, traitent I’authentification via formulaire ; d’autres, comme
le BasicAuthenticationFilter, gérent les en-tétes HTTP. D’autres filtres contrdlent encore les
sessions, appliquent la protection CSRF, ou vérifient les permissions et les roles associés a ’utilisateur.

Lorsqu’une requéte arrive, elle traverse successivement chaque filtre de la chaine. Si I’utilisateur n’est
pas authentifié ou tente d’accéder a une ressource non autorisée, un des filtres peut bloquer la requéte et
retourner une réponse adaptée (par exemple, une redirection vers la page de connexion ou une erreur
403). Si tout est conforme, la requéte est transmise aux contréleurs pour exécuter la logique métier. La
Security Filter Chain agit donc comme une barriére protectrice : elle examine chaque requéte, valide
I’identité de 1’utilisateur, contrdle ses droits, et applique diverses protections avant que 1’application ne
commence réellement a traiter la requéte.

Avec Spring Boot, cette chaine est configurée automatiquement, mais elle reste entieérement
personnalisable & travers la classe SecurityConfig. Le développeur peut choisir quels chemins laisser
publics, quels filtres activer ou désactiver, ou encore modifier la maniére dont les utilisateurs sont
authentifiés. Grace a ce systéme organisé et flexible, Spring Security peut analyser et sécuriser
efficacement chaque requéte, qu’il s’agisse d’accéder a une page, d’effectuer un envoi de formulaire ou
d’interagir avec une API REST.

Authentification

L'Authentification est le processus qui consiste a identifier et vérifier qu'un utilisateur est bien celui qu'il
prétend étre. Elle combine l'identification (fourniture d'un nom d'utilisateur) et la vérification (fourniture
d'un mot de passe ou d'une preuve similaire).

e Mécanismes de Vérification : Spring Security est congu pour prendre en charge une grande
variété de méthodes, y compris la vérification des identifiants stockés en mémoire, dans une base
de données (JDBC), via des annuaires d'entreprise (LDAP), ou par des systémes de connexion
unique (CAS, OAuth2, JWT).

e Sécurité des Mots de Passe : Pour assurer l'intégrité des données, Spring Security impose
l'utilisation d'un PasswordEncoder qui garantit que les mots de passe sont stockés sous forme
hachée (encodée) et jamais en clair.

e Gestion des Utilisateurs : Le framework utilise les interfaces clés UserDetails (représentant les
données d'un utilisateur, y compris ses roles) et UserDetailsService (chargée de récupérer ces données

depuis n'importe quelle source, telle qu'une base de données ou un service externe) pour charger et
manipuler les utilisateurs lors du processus de connexion.

e Post-Authentification : Aprés une vérification réussie, Spring Security prend en charge la gestion de

la session utilisateur de manicre sécurisée (souvent via des cookies ou des tokens).

64

PasswordEncoders

La gestion sécurisée des mots de passe est un pilier essentiel de toute application. Spring Security impose
I’utilisation d’un PasswordEncoder pour éviter le stockage des mots de passe en clair, une pratique
extrémement dangereuse. En effet, si un attaquant accéde a la base de données, il pourrait immédiatement
utiliser les mots de passe volés pour se connecter aux comptes des utilisateurs ou les tester sur d’autres sites.

Un PasswordEncoder applique un algorithme de hachage, parfois combiné a un sel cryptographique et a
un nombre d’itérations. Les méthodes les plus courantes sont :

e BCrypt : basé sur I’algorithme Blowfish, il inclut un salt automatique et est résistant aux attaques
par force brute méme sur du matériel moderne.

e SCrypt : spécialement congu pour étre coliteux en mémoire, rendant inefficace 'usage de GPU
pour craquer les mots de passe.

e PBKDF?2 : utilise un grand nombre d’itérations pour ralentir les attaques, souvent utilisé dans des
environnements industriels.

Spring Security utilise BCrypt comme option par défaut, car il offre le meilleur compromis entre
sécurité, performance et compatibilité. De plus, son coiit adaptable permet d’augmenter la résistance au
fur et a mesure que le matériel devient plus puissant.

OAuth2 et JWT

En plus des mécanismes classiques basés sur les sessions, Spring Security prend également en charge
des méthodes d’authentification modernes largement utilisées dans les architectures distribuées et les
applications mobiles : OAuth2 et JWT. OAuth2 est un protocole d’autorisation permettant a une
application d’accéder a des ressources au nom d’un utilisateur, sans jamais connaitre son mot de passe. Ce
mécanisme est aujourd’hui la base des connexions via Google, Facebook ou GitHub, et repose sur
I’obtention d’un « access token » délivré par un serveur d’autorisation. Dans les applications plus 1égéres
ou les API REST, JWT (JSON Web Token) s’impose comme un format de token compact, signé et auto-
contenu : il ne nécessite pas de session coté serveur, car toutes les informations (identité, roles, date
d’expiration) sont inscrites et sécurisées directement dans le token. Spring Security intégre nativement ces
deux approches, permettant ainsi de construire des systémes d’authentification adaptés aux microservices,
aux applications mobiles ou aux API stateless. Ce modele offre des performances élevées et une
excellente scalabilité, tout en restant compatible avec les bonnes pratiques modernes de sécurité.

Autorisation

L'Autorisation est le processus qui survient apres l'authentification et qui détermine les actions et les
ressources auxquelles l'utilisateur authentifié est autorisé a accéder. C'est le mécanisme de controle
d'acces.

65

L'objectif est d'assurer que I'utilisateur n'a accés qu'aux ressources (pages web, API, méthodes de
service) pour lesquelles il possede les droits.

Exemple concret : Dans une application de paie RH, I'Autorisation permet de s'assurer que seuls les
employés ayant le role HR peuvent accéder a la section de l'application gérant les salaires, tandis que la
consultation des bulletins de paie est autorisée a tous les employés (role EMPLOYEE).

® Modeéles d'Accés : Spring Security implémente principalement le modele Role-Based Access

Control (RBAC), ou les permissions sont regroupées et attribuées a des Roles définis (ex:
ADMIN, USER, HR). Cependant, d'autres modéles peuvent étre mis en ceuvre, comme la
vérification de permissions spécifiques.

PERMISSIONS ACCESS

Beneficial a III 9

owner

® o0 Map roles to

Map users
to roles a e e permissions II I 9
Accountant = @ Move money

Account analytics

e 0000
r Y Y Y Y E Move

Book-keeper @ Attach receipt

Figure 6-5.RBAC

e Controle Granulaire : L' Autorisation peut étre appliquée a différents niveaux de 1'application :
o Au niveau des URL/endpoints (par exemple, autoriser I'accés a /admin/**
uniquement aux utilisateurs avec le role ADMIN).
o Auniveaudesméthodes (par exemple, empécher I'exécution d'une méthode de service
critique si l'utilisateur n'a pas la permission adéquate).

Sécurisation des URLSs et des Méthodes

La sécurisation des ressources dans Spring Security s’effectue principalement a deux niveaux
complémentaires : au niveau des URLs et au niveau des méthodes. D’abord, la configuration HttpSecurity
permet de contrdler I’accés aux différentes routes HTTP de 1’application. Grace a cette configuration, il est
possible de définir quelles URLs sont publiques, lesquelles nécessitent une authentification, et lesquelles
sont réservées uniquement a certains roles d’utilisateurs. Par exemple, on peut autoriser librement 1’acces
aux pages de connexion ou d’inscription, tout en protégeant les pages

66

d’administration. Cette approche garantit qu’une requéte envoyée a 1’application ne pourra atteindre un
controleur sensible que si I’utilisateur posseéde les permissions requises.

En complément, Spring Security propose la sécurisation au niveau du code grace aux annotations telles
que @Secured, @PreAuthorize et @PostAuthorize. Ces annotations permettent de contrdler ’acces
directement sur les méthodes Java, offrant une sécurité plus fine et liée a la logique métier.

Premiérement, I'annotation @Secured est la plus simple : elle est placée sur une méthode pour indiquer
quels roles spécifiques (ex: ROLE _ADMIN) sont autorisés a I'exécuter. Si l'utilisateur n'a pas I'un de ces
roles, l'exécution est bloquée. Deuxiémement, (@ PreAuthorize est 'outil le plus flexible car elle utilise
le langage d'expression SpEL (Spring Expression Language) pour évaluer des conditions complexes
avant l'appel de la méthode. Cela permet de vérifier non seulement le role de 1'utilisateur, mais aussi des
conditions basées sur les données passées a la méthode (par exemple, s'assurer que l'utilisateur n'essaie de
modifier que son propre compte). Enfin, (@PostAuthorize est une annotation rare qui évalue une
expression SpEL apres 'exécution de la méthode, permettant de vérifier la validité ou l'accessibilité du
résultat retourné (par exemple, autoriser ou non la lecture d'un objet si l'utilisateur est son propriétaire).
L'utilisation de ces annotations assure un controle d'accés précis, directement intégré a la logique métier
de I'application.

L’association de la sécurisation des URLs via HttpSecurity et de la sécurisation méthodologique via
ces annotations assure une protection complete, cohérente et flexible de 1’application.

Protection contre les attaques courantes

Au-dela des mécanismes d'authentification et d'autorisation, Spring Security renforce la posture de sécurité
d'une application en intégrant nativement des défenses automatiques contre les vulnérabilités web largement
reconnues, souvent via sa propre chaine de filtres. Ceci est un avantage essentiel : ces protections sont
activées par défaut et ne demandent aucune implémentation manuelle de la part du développeur, ce qui
assure une base de sécurité robuste dés le démarrage de 1'application.

Une protection fondamentale est la gestion des jetons CSRF (Cross-Site Request Forgery). Pour
contrer cette attaque qui force l'utilisateur a exécuter des actions non désirées a son insu, Spring Security
fait en sorte que chaque formulaire ou requéte importante regoive un code secret unique (le jeton). Le
serveur vérifie que ce code secret est bien envoyé avec la requéte. Si la requéte provient d'un site tiers
malveillant, elle sera bloquée faute de ce jeton valide. Ce mécanisme est comparable a 1'utilisation d'un
mot de passe unique a usage unique pour chaque transaction importante.

Le framework met également en ceuvre la prévention de la fixation de session (Session Fixation).
Cette défense empéche un attaquant d'imposer un identifiant de session connu a un utilisateur avant que
celui-ci ne se connecte. Spring Security résout ce probléme par la rotation de la session : lorsqu'un
utilisateur se connecte avec succes, le framework invalide immédiatement 1'ancienne session temporaire
et en crée une nouvelle avec un identifiant complétement différent et secret. Cela est similaire a changer la
serrure de sa chambre d'hdtel aprés avoir prouvé son identité.

67

Enfin, le composant de sécurité HTTP assure la sécurisation des en-tétes de réponse. Ces petites
informations envoyées au navigateur sont configurées pour se défendre contre d'autres attaques :

e Contre le XSS (Cross-Site Scripting), 1'en-téte Content-Security-Policy (CSP) agit comme

un ensemble de régles strictes, ordonnant au navigateur de n'autoriser le chargement de scripts

que depuis des sources fiables (le domaine de 'application).

e Contre le Clickjacking (qui piege l'utilisateur en placant la page dans un cadre transparent),
I'en-téte X-Frame-Options (ou des directives CSP) interdit I'affichage de la page dans une iframe

sur un site étranger.

e Pour forcer le HTTPS, l'en-téte Strict-Transport-Security (HSTS) demande au navigateur
de se souvenir de toujours n'utiliser que le protocole sécurisé€ pour toutes les communications

futures avec le site.

L'ensemble de ces mesures renforce considérablement l'intégrité et la confidentialité des échanges de
données.

Gestion des sessions

Spring Security assure également une gestion avancée des sessions afin de protéger 1’application contre
plusieurs attaques liées a I’usurpation ou au détournement des sessions utilisateur. D'abord, le framework
inclut une protection contre la session fixation, déja décrite précédemment, en régénérant systématiquement
I’ID de session aprés authentification. Ensuite, il prend en charge I’expiration automatique des sessions,
permettant de définir une durée maximale d’inactivité. Lorsque la session expire, 1’utilisateur doit se
reconnecter, renforcant ainsi la sécurité des zones sensibles.

Un autre aspect important est la gestion de la concurrence des sessions (session concurrency control).
Spring Security peut empécher un utilisateur d’ouvrir plusieurs sessions simultanées, ou limiter leur
nombre (par exemple, une seule session active par utilisateur). Cette fonctionnalité est essentielle dans des
contextes ou le partage de comptes est interdit ou lorsque 1’application manipule des données sensibles.

Grace a ces mécanismes, la gestion des sessions dans Spring Security apporte une couche

supplémentaire de protection tout en permettant de configurer des comportements adaptés selon les
besoins de I’application.

6.5 Intégration avec Spring Boot

L’un des principaux avantages de Spring Boot est sa capacité a simplifier la configuration de Spring
Security grace & son mécanisme d’auto-configuration. En effet, [’ajout de la dépendance spring-boot-
starter-security suffit pour activer immédiatement une sécurité¢ de base dans 1’application. Dés le premier
démarrage, Spring Boot génére automatiquement un utilisateur par défaut, généralement nommé user,
accompagné d’un mot de passe temporaire affiché dans la console. Cette configuration préétablie protége
¢galement I’ensemble des endpoints de 1’application : toutes les URLs nécessitent une authentification, et
un formulaire de connexion standard est mis a disposition sans qu’aucun code supplémentaire ne soit
nécessaire.

68

Une fois cette configuration automatique en place, le développeur peut personnaliser la sécurité selon les
besoins du projet. Cela se fait généralement en créant une classe de configuration dédiée (SecurityConfig),
ou il devient possible de définir les régles d’accés aux ressources, de créer des utilisateurs personnalisés,
d’intégrer une base de données pour la gestion des comptes, ou encore de modifier le comportement du
formulaire de connexion. Grace a cette approche, Spring Boot combine simplicité et flexibilité, permettant
aux débutants de démarrer rapidement tout en offrant aux développeurs avancés un haut niveau de controle
sur la sécurité de leur application.

La création de la classe SecurityConfig oot anpnotée avec @Configuration et
(@EnableWebSecurity, dans laquelle on redéfinit le bean SecurityFilterChain.

Cette classe permet de définir quelles pages sont publiques, quelles pages nécessitent une
authentification, quels roles sont autorisés a accéder a certains endpoints, ou encore quel formulaire de
connexion utiliser. Voici un exemple simple de configuration :

@Configuration
@EnableWebSecurity
publicclassSecurityConfig {
@Bean
publicSecurityFilterChain securityFilterChain(HttpSecurity http) throws
Exception{
http
.authorizeHttpRequests(auth -> auth
.requestMatchers("/login", "/register").permitAll()
.requestMatchers("/admin/**").hasRole("ADMIN")
.anyRequest().authenticated()

.formLogin(form -> form
.loginPage("/login")
.defaultSuccessUrl("/home", true)

)

.logout(logout -> logout
.logoutUrl("/logout")
.logoutSuccessUrl("/login?logout")

)

returnhttp.build();

}
@Bean

publicPasswordEncoder passwordEncoder() {
returnnew BCryptPasswordEncoder();

Code 6-1.SecurityConfig

Cette configuration illustre les principaux mécanismes de Spring Security dans une application Spring
Boot, comment permettre 1’accés libre a certaines pages, protéger les pages administratives, personnaliser

69

le formulaire d’authentification, comment Spring Security centralise la gestion des rdles, des pages
protégées et du processus d’authentification grace a une approche simple et modulable.

Le bean SecurityFilterChain permet de définir les régles d’acces aux différentes URL : dans cet
exemple, les pages /login et /register sont publiques, tandis que toutes les autres requétes exigent une
authentification. De plus, les routes commencgant par /admin/** sont réservées aux utilisateurs possédant
le r6le ADMIN. La section formLogin() permet de personnaliser le formulaire d'authentification, en
indiquant la page de connexion et la destination aprés un login réussi. De méme, logout() configure
I’URL de déconnexion ainsi que la page affichée aprés la sortie. Enfin, le bean PasswordEncoder utilise
I’algorithme BCrypt pour hacher les mots de passe, garantissant un stockage sécurisé.

6.6 Bonnes pratiques

Pour garantir un niveau de sécurité ¢levé dans une application Spring Boot, il est essentiel d’adopter un
ensemble de bonnes pratiques complémentaires aux mécanismes fournis par Spring Security. Tout d’abord,
les mots de passe ne doivent jamais étre stockés en clair : ils doivent toujours étre hachés a I’aide d’un
algorithme robuste comme BCrypt. L’utilisation systématique du protocole HTTPS est également
indispensable afin de protéger les données en transit contre les interceptions et les attaques de type « Man-
in-the-Middle ». Il est recommandé d’appliquer le principe du moindre privilége en attribuant aux
utilisateurs uniquement les roles nécessaires a leurs actions, tout en évitant de coder les réles ou permissions
directement dans le code source. Pour les API REST, il est important de désactiver la protection CSRF, tout
en adoptant une authentification stateless basée sur des tokens (JWT). Enfin, la journalisation des tentatives
d’acces, la surveillance des anomalies, ainsi que la mise en place d’une expiration de session et de limites
sur les connexions simultanées permettent de renforcer la sécurité globale de I'application.

70

Chapitre 7. Tests et Qualité du Code

Les tests jouent un rdle essentiel dans le développement logiciel, car ils permettent de vérifier la justesse et
la fiabilité des fonctionnalités. Dans le monde Java, JUnit et TestNG comptent parmi les frameworks de test
les plus utilisés. Une pratique répandue est le Test Driven Development (TDD), qui consiste a écrire d’abord
les tests puis a développer uniquement le code nécessaire pour les faire réussir. On distingue généralement
plusieurs types de tests : les tests unitaires, qui évaluent un composant isolé, et les tests d’intégration, qui
valident le comportement d’un ensemble de composants. Lors de tests d’intégration, il est souvent nécessaire
de simuler des dépendances externes comme des appels & des services web tiers ou des interactions avec la
base de données ; pour cela, des bibliothéques comme Mockito, PowerMock ou jMock permettent de créer
des objets simulés. L’injection de dépendances, principe fondamental de Spring, facilite grandement
I’écriture de code testable puisqu’elle permet d’injecter des implémentations factices pendant les tests et des
implémentations réelles en production. Spring, en tant que conteneur loC, propose d’ailleurs une excellente
prise en charge de différents scénarios de test. Dans le contexte de Spring Boot, il existe des outils
spécialement congus pour tester des parties précises de 1’application : par exemple, @WebMvcTest pour
tester les controleurs web, @DatalpaTest pour tester les repositories JPA, ou encore @JdbcTest pour
vérifier les interactions via JDBC. Ce chapitre montre ainsi comment tester efficacement les composants
d’une application Spring Boot en isolant chaque couche selon son rdle spécifique.

7.1 Tests des Applications Spring Boot

L’une des principales raisons de la popularité du framework Spring est son excellent support pour les
tests. Spring fournit SpringRunner, un exécuteur JUnit personnalis¢é qui permet de charger
automatiquement le Spring ApplicationContext grace a I’annotation
@ContextConfiguration(classes=AppConfig.class).

Un test Spring typique ressemble a ce qui suit :

Listing 7-1. Test JUnit Spring typique

(SpringRunner.class)
(classes=AppConfig.class)

publicclass UserServiceTests

{
UserService userService;
public void should_load_all_users()
{
List<User> users = userService.getAllUsers();
assertNotNull(users);
assertEquals(10, users.size());
}
}

71

Une application Spring Boot n’est finalement rien d’autre qu’une application Spring, donc vous pouvez
utiliser toutes les fonctionnalités de test de Spring dans une application Spring Boot. Cependant, certaines
fonctionnalités propres a Spring Boot comme le chargement automatique des propriétés externes ou la
configuration du logging ne sont disponibles que si I’ApplicationContext est créé¢ avec la classe
SpringApplication, utilisée dans la classe d’entrée de I’application :

publicclass SpringbootTestingDemoApplication

{
public static void main(String[] args)
{
SpringApplication.run(SpringbootTestingDemoApplication.class, args);
}
}

Spring Boot propose alors I’annotation ~ @SpringBootTest , qui utilise SpringApplication en
interne pourcharger I’ ApplicationContext, garantissant ainsi que toutes les fonctionnalités Spring
Boot restent accessibles pendant les tests.

Listing 7-2. Test JUnit typique avec Spring Boot

(SpringRunner.class)

publicclass SpringbootTestingDemoApplicationTests

{
UserService userService;
public void should_load_all_users()
{
}
}

Avec @SpringBootTest, il est possible de fournir des classes de configuration Spring, des fichiers XML
ou d’autres types de configuration, mais dans une application Spring Boot, on utilise généralement la classe
d’entrée principale.

Le starter spring-boot-starter-test inclut JUnit, Spring Test et Spring Boot Test, ainsi que
plusieurs bibliothéques essentielles pour les tests, notamment :

e Mockito : framework de mock Java

e Hamcrest : bibliothéeque de matchers pour les assertions
® AssertJ : bibliothéque d’assertions fluides

72

http://site.mockito.org/
http://hamcrest.org/JavaHamcrest/
http://hamcrest.org/JavaHamcrest/
https://joel-costigliola.github.io/%20assertj/

e JSONassert : assertions sur des données JSON
e JsonPath : équivalent XPath pour JSON

7.2 Tests avec des Implémentations Mock

Lors des tests unitaires, il est souvent nécessaire de simuler les appels a des services externes, comme les
acces a la base de données ou les appels a des web services. Pour cela, deux approches sont possibles :
créer manuellement des implémentations mock utilisées uniquement dans les tests, ou utiliser une
bibliotheque de mocking pour générer automatiquement des objets simulés. Créer des mocks
manuellement consiste a écrire soi-méme des classes qui imitent le comportement des dépendances
réelles. Cette approche fonctionne, mais elle devient rapidement lourde et fastidieuse dés que les cas a
couvrir se multiplient.

Pour éviter cette complexité, il est beaucoup plus pratique d’utiliser une bibliothéque de mocking. L’une
des plus populaires en Java est Mockito, qui s’intégre parfaitement avec JUnit. Mockito permet de créer
des objets mock sans devoir écrire de classes supplémentaires, et de définir précisément les
comportements attendus.

Par exemple, si votre service appelle un web service externe et que vous devez tester la logique de retry
en cas d’erreur, il serait difficile de provoquer réellement une panne de communication. Avec Mockito,
vous pouvez facilement simuler une exception, forcer I’échec de 1’appel, et vérifier que votre code tente
bien trois essais avant d’abandonner. De méme, supposez que vous importez des données utilisateurs
depuis un service tiers comme dans I’exemple du Listing 7-3.

Listing 7-3. Users Importer.java

public class UsersImporter

{

public List<User> importUsers() throws UserImportServiceCommunicationFailure

{

List<User> users = new ArraylList<>();

users.add(new User());
users.add(new User());
users.add(new User());
return users;
}
}

Vous pouvez utiliser @Mock pour créer un objet mock et @InjectMocks pour injecter
automatiquement ces mocks dans les dépendances de la classe testée.

73

https://github.com/%20skyscreamer/JSONassert
https://github.com/json-path/JsonPath.

Vous pouvez également utiliser @RunWith(MockitoJUnitRunner.class) pour initialiser les objets
mock, ou déclencher cette initialisation manuellement en appelant MockitoAnnotations.initMocks(this)
dans une méthode @Before de JUnit.

Listing 7-4. Tests utilisant des objets mock Mockito

import static org.assertj.core.api.Assertions.assertThat;
import static org.mockito.BDDMockito.*;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.mockito.InjectMocks;
import org.mockito.Mock;
import org.mockito.junit.MockitoJUnitRunner;
import com.apress.demo.exceptions.UserImportServiceCommunicationFailure;
import com.apress.demo.model.UsersImportResponse;
(MockitoJUnitRunner.class) public class UsersImportServiceMockitoTest

{

private UsersImporter usersImporter;
private UsersImportService usersImportService;

public void should_retry_3times_when_UserImportServiceCommunicationFailure_occured()

{

given(usersImporter.importUsers()).willThrow(new UserImportServiceCommunication
Failure());

UsersImportResponse response = usersImportService.importUsers();
assertThat(response.getRetryCount()).isEqualTo(3);
assertThat(response.getStatus()).isEqualTo("FAILURE");

Ici, vous simulez une condition d’échec lors de I’importation des utilisateurs via le service web grace a
I’instruction suivante : given(usersImporter.importUsers()).willThrow(new
UserlmportServiceCommunicationFailure());

Ainsi, lorsque vous appelez userService.importUsers() et que 1’objet mock usersImporter déclenche 1’exception
UserlmportServiceCommunicationFailure, la méthode sera réessayée trois fois avant d’abandonner.

Spring Boot fournit également I’annotation @MockBean, qui permet de définir un nouveau mock Mockito en
tant que bean Spring, ou de remplacer un bean Spring existant par un mock, puis de I’injecter automatiquement
dans les composants qui en dépendent.

Les mock beans sont automatiquement réinitialisés aprés chaque méthode de test.

Voir le Listing 7-5.
74

Listing 7-5. Tests utilisant le mock @MockBeande Spring Boot

import static org.assertj.core.api.Assertions.assertThat;

import static org.mockito.BDDMockito.*;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.boot.test.mock.mockito.MockBean;

import org.springframework.test.context.junit4.SpringRunner;

import com.apress.demo.exceptions.UserImportServiceCommunicationFailure;

import com.apress.demo.model.UsersImportResponse;
(SpringRunner.class)

public class UsersImportServiceMockitoTest

{

private UsersImporter usersImporter;
private UsersImportService usersImportService;

public void should_retry_3times_when_UserImportServiceCommunicationFailure_occured()

;iven(userslmporter.importUsers()).willThrow(new UserImportServiceCommunication
Failure());

UsersImportResponse response = usersImportService.importUsers();
assertThat(response.getRetryCount()).isEqualTo(3);
assertThat(response.getStatus()).isEqualTo("FAILURE");

}
H

Ici,SpringBootvacréer un objet mock pour Usersimporter et ' injecter dans le bean
UserslmportService

7.3 Tester des tranches de ’application a ’aide des annotations @*Test

Lors du test des différents composants de 1’application, vous pouvez souhaiter charger uniquement un
sous-ensemble de beans du Spring ApplicationContext, ceux qui sont liés au sujet testé (SUT). Par
exemple, lorsque vous testez un contréleur Spring MVC, vous pouvez vouloir charger uniquement les
composants de la couche MVC (couche présentation) et fournir des beans simulés (mock) de la couche
service en tant que dépendances. Spring Boot fournit des annotations comme @WebMvcTest,
@DatalpaTest, @DataMongoTest, @JdbcTest et @JsonTest pour tester des tranches spécifiques
de I’application.

75

Tester les Controleurs Spring MVC Avec @WebMvcTest

Spring Boot fournit I’annotation @WebMvcTest, qui va auto-configurer les composants de 1’infrastructure
Spring MVC et charger uniquement les éléments suivants : @Controller, @ControllerAdvice,
@JsonComponent, Filter, WebMvcConfigurer, et HandlerMethodArgumentResolver.

Les autres beans Spring (annotés avec @Component, @Service, @Repository, etc.) ne seront pas scannés

lorsque vous utilisez cette annotation.

Vous allez maintenant voir comment créer un contrdleur qui ajoute des données au modele et rend une vue
Thymeleaf. Voir Listing 15-14.

Listing 7-6. TodoController.java

import
import
import
import
import

public
{

org.springframework.beans.factory.annotation.Autowired;
org.springframework.stereotype.Controller;
org.springframework.ui.Model;
org.springframework.web.bind.annotation.GetMapping;
com.apress.demo.repositories.TodoRepository;

class TodoController

TodoRepository todoRepository;

public

("/todolist")
String showTodos(Model model)

model.addAttribute("todos", todoRepository.findAll());

return

}
}

"todos";

Listing 7-7 montre comment écrire un test pour TodoController en utilisant @WebMvcTest.

Listing 7-7. Tester un contréleur Spring MVC avec MockMvc

import
import
import
import
import
import
import

76

static org.mockito.BDDMockito.*;

static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;
static org.hamcrest.Matchers.*; import java.util.Arrays; import org.junit.Test;
org.junit.runner.RunWith;
org.springframework.beans.factory.annotation.Autowired;
org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTest;

import org.springframework.boot.test.mock.mockito.MockBean;
import org.springframework.http.MediaType;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.test.web.servlet.MockMvc;
import com.apress.demo.entities.Todo;
import com.apress.demo.repositories.TodoRepository;
(SpringRunner.class)
(controllers= TodoController.class)
public class TodoControllerTests

{

private MockMvc mvc;
private TodoRepository todoRepository;

public void testShowAllTodos() throws Exception

godo todol = new Todo(l, "Todol",false);

Todo todo2 = new Todo(2, "Todo2",true);
given(this.todoRepository.findAl1l()).willReturn(Arrays.asList(todol, todo2));
this.mvc.perform(get("/todolist™)

.accept(MediaType.TEXT_HTML))

.andExpect(status().is0k())

.andExpect(view().name("todos"))

.andExpect(model().attribute("todos", hasSize(2)))

verify(todoRepository, times(1)).findAll();

}
}

Vous avez annoté le test avec @WebMvcTest(controllers = TodoController.class) en spécifiant
explicitement quel controleur vous testez. Comme @WebMvcTest ne charge pas les autres beans Spring
classiques et que TodoController dépend de TodoRepository, vous avez fourni un bean mock en utilisant
I’annotation @MockBean.L’annotation @WebMvcTest configure automatiquement MockMvc, qui peut étre
utilisé pour tester les contréleurs sans démarrer un véritable conteneur servlet.

Dans cette méthode de test, vous définissez le comportement attendu de todoRepository.findAll(), afin qu’il

renvoie une liste de deux objets Todo. Ensuite, vous effectuez une requéte GET vers “/todolist” et vous
vérifiez plusieurs éléments dans la réponse.

77

Tester les Composants de la Couche de Persistance Avec @DatalpaTest et
@JdbcTest

Vous pouvez souhaiter tester les composants de la couche de persistance de votre application, ce qui ne
nécessite pas le chargement de nombreux autres composants comme les contrdleurs, la configuration de
sécurité, etc. Spring Boot fournit les annotations @DataJpaTest et @JdbcTest pour tester les beans Spring
qui interagissent avec des bases de données relationnelles.L.’annotation @DataJpaTest permet de tester les
composants de la couche persistance en auto-configurant des bases de données embarquées en mémoire et
en scannant les classes annotées @ZEntity ainsi que les repositories Spring Data JPA. Cette annotation ne
charge pas les autres beans Spring (@Component, @Controller, @Service, etc.) dans

le ApplicationContext.

Vous allez maintenant voir comment tester les repositories Spring Data JPA dans une application Spring
Boot. Pour cela, créez un projet Maven Spring Boot avec les starters Data-JPA et Test.

Ensuite,vous créez une entité JPA appelée User, représentant les utilisateurs dans la base de données,
ainsi qu’un repository Spring Data JPA appelé UserRepository pour gérer les opérations CRUD sur
cette entité. L’entité contient des champs tels que I’identifiant, le nom, I’email et le mot de passe, avec des
contraintes appropriées (unicité, non nullité, etc.). Pour initialiser la table USERS de la base de données,
vous pouvez ajouter des données statiques via un fichier data.sql situé dans src/main/resources,
ce qui vous permet de disposer immédiatement d’un jeu de données de test lors de I’exécution de
I’application.

Vous pouvez maintenant tester UserRepository en utilisant I’annotation @DataJpaTest, comme
illustré dans Listing 7-8 :

Listing 7-8. Tester les Spring Data JPA Repositories avec @DataJpaTest

(SpringRunner.class)

publicclass UserRepositoryTests

{

private UserRepository userRepository;

public void testFindByEmail() {
User user = userRepository.findByEmail("admin@gmail.com");
assertNotNull(user);
assertEquals(1l, user.getId());
assertEquals("admin", user.getName());

78

Lorsque vous exécutez UserRepositoryTests, Spring Boot auto-configurera automatiquement une base de
données embarquée en mémoire H2 (si le driver H2 est présent dans le classpath) et exécutera les tests. Si

vous souhaitez effectuer les tests sur la base de données réelle configurée, vous pouvez annoter le
test avec@AutoConfigureTestDatabase(replace=Replace. NONE).

Cela utilisera la DataSource enregistrée au lieu d’une datasource en mémoire. Vous pouvez également
utiliser Replace. AUTO_CONFIGURED pour remplacer la DataSource auto-configurée, ou Replace. ANY
(valeur par défaut) pour remplacer toute datasource bean auto-configurée ou définie explicitement.Les
tests avec (@DataJpaTest sont transactionnels et les modifications sont annulées a la fin de chaque test
par défaut.Vouspouvez désactiver ce comportement de rollback pour un test spécifique ou pour une
classe de test entiere en utilisant (@Transactional(propagation = Propagation.NOT_SUPPORTED).

Demanicre similaire a I’annotation @DataJpaTest, vous pouvez utiliser @JdbcTest pour tester des
méthodes liées au JDBC en utilisant JdbcTemplate. L’annotation @JdbcTest auto-configure également
des bases de données embarquées en mémoire et exécute les tests de maniére transactionnelle.

Vous allez maintenant créer un JdbcUserRepository pour effectuer des opérations sur la base de
données en utilisant JdbcTemplate, comme montré dans Listing 7-9 :

Listing 7-9. JdbcUserRepository.java

publicclass JdbcUserRepository

{
private JdbcTemplate jdbcTemplate;
public JdbcUserRepository(JdbcTemplate jdbcTemplate) {
this.jdbcTemplate = jdbcTemplate;
}
public List<User> findAll() {
}
H

Listing 7-10 montre comment tester les méthodes de JdbcUserRepository en utilisant @JdbcTest

Listing 7-10. Tester les opérations JDBC avec @JdbcTest

(SpringRunner.class)

79

publicclass JdbcUserRepositoryTests

{

@Autowired

private JdbcTemplate jdbcTemplate;

private JdbcUserRepository userRepository;

@Before

public void init()

{
userRepository = new JdbcUserRepository(jdbcTemplate);
jdbcTemplate.execute("create table people(id int, name varchar(100))");
jdbcTemplate.execute("insert into people(id, name) values(1l, 'John')");
jdbcTemplate.execute("insert into people(id, name) values(2, 'Remo')");
jdbcTemplate.execute("insert into people(id, name) values(3, 'Dale')");

}

@Test

public void testFindAllUsers() throws Exception

{
List<User> users = userRepository.findAll();
assertThat(users.size()).isEqualTo(3);

}

H

Comme @JdbcTest ne charge aucun bean Spring régulier annoté @Component, cet exemple crée
manuellement D’instance de JdbcUserRepository en utilisant le bean JdbcTemplate

auto-configuré.

De maniére similaire & @DatalpaTest et @JdbcTest, Spring Boot fournit d’autres annotations pour
tester des parties spécifiques de I’application, comme @DataMongoTest, @DataNeo4jTest,
@JooqTest, @JsonTest et @DatalLdapTest.

80

Annexes

AnnexeA : Annotations Spring les plus courantes

Annotation Description Utilisation
@Controller Indique qu’une classe est un contréleur MVC Couche Web (retourne une vue)
@RestController Combinaison de @Controller et API REST (retourne JSON/XML)
@ResponseBody
@Service Indique une classe de logique métier Couche Service Couche d'accés BD,
@Repository Indique une classe d’acces aux données gere le?’
(DAO) exceptions
@Component Classe a injecter (si aucune autre
Composant générique Spring annotation spécialisée ne correspond)
@Autowired Injection automatique de dépendance Constructeur, attribut, setter

@Qualifier("name"

Précise quel bean utiliser quand il y en a
plusieurs du méme type

Injection ciblée

@Value("${prop}")

Injecte une valeur depuis le fichier
application.properties

Variables configurables

@Bean

Déclare manuellement un bean dans une
classe @Configuration

Configurations avancées

@SpringBootApplication

Active I’auto-configuration, le scan de
composants, la config Spring Boot

Classe principale

@EnableAutoConfiguration

Laisse Spring Boot configurer les beans
automatiquement

Inclus dans @SpringBootApplication

@ComponentScan

Indique a Spring quelles packages scanner

Inclus dans SpringBootApplication

@Configuration

Indique que la classe contient des beans
Java-based

Fichiers de configuration

@GetMapping("/path")

Mappe une requéte HTTP GET

Controleur REST

@PostMapping("/path")

Mappe une requéte HTTP POST

Formulaires, création

@PutMapping("/path™)

Mappe une requéte HTTP PUT

Mise a jour

@DeleteMapping("/path™)

Mappe une requéte HTTP DELETE

Suppression

107

@RequestParam Parameétres dans I’URL ?name=valuel Requétes GET

@PathVariable Paramétre dans le chemin /users/{id}| REST API

@RequestBody Récupére le JSON envoyé par le clienf POST, PUT

@ResponseBody Indique que la méthode retourne directement | Automatique avec @RestController
des données

@Entity Représente une table dans la BD Classe modéle

@Table(name="...") Spécifie le nom de la table Mapping BD

@Id CI¢é primaire Identifiant

@GeneratedValue Auto-incrémentation PK

@Column Propriétés d’une colonne Taille, nullability, nom

Relations entre tables

@OneToMany / @ManyToOne / Mapping relationnel
@ManyToMany

@JoinColumn Colonne de jointure Relations JPA
@Valid Valide un objet recu Controleurs
@NotNull Champ obligatoire Validation form
@NotBlank Texte non vide String

@Email Vérification email Formulaires

@Min, @Max

Contraintes numériques

Champs int/float

@Size(min, max)

Taille minimale/maximale

String ou listes

@EnableWebSecurity

Active Spring Security

@Configuration

Définit une classe de sécurité

@PreAuthorize("hasRole("ADMIN")")

Autorisation au niveau des méthodes

@>Secured("ROLE_ADMIN")

Autorisation basique

@Transactional

Indique que la méthode (ou la classe) utilise

une transaction

Couche service / DAO

@EnableTransactionManagement

Active la gestion des transactions

Fichier de configuration

108

Annexe B : Bibliographie et références

Spring Start Here: Learn what You Need and Learn it Well par Laurentiu Spilca
Spring developing java applications for the enterprise par Ravi Kant Soni, Amuthan Ganeshan Rajesh RV

Java Spring Boot From Beginner to Pro A Comprehensive Guide to Modern Java Development 3 Books in 1

par Darren Green

Beginning Spring Boot 2 Applications and Microservices with the Spring Framework par K. Siva Prasad
Reddy

https://www.geeksforgeeks.org/advance-java/spring-boot/
https://www.geeksforgeeks.org/springboot/spring-boot-rest-example/

] Jd . no-f ref y

hiths: L oo I/ref web/webmve. html

https://gayerie.dev/docs/spring/spring/spring_mvc_intro.html

https://cloud.tencent.com/developer/article/2571626

https://openclassrooms.com/fr/courses/6900101-creez-une-application-java-avec-spring-boot

https://www.sfeir.dev/back/comprendre-les-annotations-dans-spring-boot/

109

https://www.geeksforgeeks.org/advance-java/spring-boot/
https://www.geeksforgeeks.org/springboot/spring-boot-rest-example/
https://docs.spring.io/spring-framework/reference/
https://docs.spring.io/spring-framework/reference/web/webmvc.html
https://gayerie.dev/docs/spring/spring/spring_mvc_intro.html
https://cloud.tencent.com/developer/article/2571626
https://openclassrooms.com/fr/courses/6900101-creez-une-application-java-avec-spring-boot
https://www.sfeir.dev/back/comprendre-les-annotations-dans-spring-boot/

