
Table de Matière
Introduction Générale..IV

Chapitre 1. Préparation de l'Environnement de Développement..1
 1.1 Configuration Système Requise et ChoixTechnologiques..1
 1.2 Installation des Outils Nécessaires..1
 JDK (Java Development Kit)...1
 IDE (Environnement de Développement Intégré)..2
 Maven/Gradle : Outils de Construction (Build)..2
 1.3 Configuration et Validation de l'Environnement..2
 Configuration des Variables Clés..2
 Vérification de l'Intégrité de l'Installation...2
 1.4 Création et Importation du Projet Fondateur...3
 Utilisation de Spring Initializr...3

Chapitre 2. Fondamentaux de Spring Framework...5

2.1 Philosophie et principes de conception de Spring..5

2.2. Inversion de Contrôle (IoC)..11
 Concept théorique : Qu’est-ce que l’IoC ?...11
 Le Conteneur Spring : ApplicationContext..11
 Cycle de vie des beans..12
 Configuration Spring : XML, Annotations, Java Config...13
 Comparaison synthétique...15
 2.3 Injection de Dépendances (DI)...15
 Principe de la DI et ses avantages...15
 Types d’injection : constructeur, setter et field...15
 Bonnes pratiques d’injection...17
 3.4 Autowiring..17
 Mécanismes d’Autowiring (@Autowired, @Qualifier)..17
 Résolution des ambiguïtés...18

Chapitre 3. Spring Boot : Simplification du Développement..20

3.1 Qu'est-ce que Spring Boot ?..20

1. Évolution des applications d'entreprise : du JEE traditionnel aux frameworks modernes.......................IV
2. Présentation de Spring et Spring Boot..V

2.1. Le framework Spring : une fondation pour la productivité..V
2.2. Spring Boot : l'accélérateur de développement... VII

 Structure de Projetet ImportationdansEclipse...4

Les problématiques résolues par Spring.. 5
Architecture modulaire de Spring...7
Comment les modules s’articulent..9
Bénéfices concrets & Cas d’usage..9
Quelques bonnes pratiques architecturales liées à la philosophie Spring...10

@Component, @Service,@Repository,@Controller...18

7

Spring Boot Starters..20
 Spring Boot Autoconfiguration..21
 Gestion de Configuration Élégante...21
 Spring Boot Actuator..22
 Support des Serveurs Embarqués...22

 3.2 Explorez Votre Première Application Spring Boot...22
Créer Le Projet Avec Spring Initializr..22
 Exploration du Projet..24
 La Classe Point d’Entrée de l’Application...28
 Création d’un Fat JAR avec le Spring Boot Maven Plugin..29

 3.3 Auto-Configuration..30
 Principe du “Convention Over Configuration”..30
 Explorer La Puissance de @Conditional..30
 Conditionnement Basé Sur Les Propriétés Système...32
 Les Annotations @Conditional intégrées de Spring Boot..33
 Comment L’Autoconfiguration Fonctionne dans Spring Boot...34

 3.4 Les bases de Spring Boot...37
 Logging... 37
 Externalisation des Propriétés de Configuration..38
 Developer Tools..39

 Chapitre 4. Développement d'Applications Web avec Spring MVC..41
 4.1 Architecture MVC et Contexte Spring Web..41

 Le Modèle MVC : Principes et Responsabilités...41
Intégration de Spring Web MVC et Rôle du Serveur...42

 4.2 Controllers..42
@RestController vs @Controller...42

 Mapping des Requêtes..42
 Gestion des Paramètres et du Path..43

 4.3 Création d'APIs RESTful..43
Principes REST...43
 HTTP Methods et Codes de Statut...44
Annotations de Gestion des Données...44

 4.4 Gestion des Réponses...44
ResponseEntity et Personnalisation des Réponses...44

 4.5 Validation des Données..45
 Bean Validation (JSR-380)...45
Annotations de Validation...45
 Gestion des Erreurs de Validation...46

 Chapitre 5. Persistance des Données avec Spring Data JPA...47
5.1 C’est quoi Spring Data ?...47

 5.2 Introduction à JPA et Hibernate..48
 ORM : concepts et avantages...48
 JPA comme spécification, Hibernate comme implémentation...48
Configuration de la base de données..49

Ajout de méthodes dans une interface de repository...55
Conclusion... 59

Chapitre 6. Sécurisation des Applications avec Spring Security..60
6.1 Qu’est ce que Spring Security?...60
 6.2 Comment Spring Boot simplifie l’utilisation de Spring Security?..61
 6.3 Fonctionnement général..61
 6.4 Concepts Fondamentaux de Spring Security..62

Security Filter Chain...62
Authentification.. 64
PasswordEncoders.. 65
 OAuth2 et JWT...65
Autorisation.. 65

Sécurisation des URLs et des Méthodes..66
Protection contre les attaques courantes...67
 Gestion des sessions...68

 6.5 Intégration avec Spring Boot..68
 6.6 Bonnes pratiques..70

Chapitre 7. Tests et Qualité du Code...71
7.1 Tests des Applications Spring Boot..71

 7.2 Tests avec des Implémentations Mock...73
 7.3 Tester des tranches de l’application à l’aide des annotations @*Test..75

Tester les Contrôleurs Spring MVC Avec @WebMvcTest...76
 Tester les Composants de la Couche de Persistance Avec @DataJpaTest et @JdbcTest...............................87

Chapitre 8. Étude de Cas Pratique:Application Complète...81
8.1 Cahier des charges...81

 8.2 Conception..81
 8.3 Implémentation pas à pas..84
 8.4 Tests de l'application..99

 Tests des contrôleurs REST...101
 8.5 Synthèse Technique..104

Chapitre 9. Conclusion et Perspectives...105
9.1 Récapitulatif des compétences acquises...105
 9.2 Bonnes pratiques de développement..105
 9.3 Ressources pour aller plus loin...106
 9.4 Évolution de l’écosystème Spring...106

Annexe A : Annotations Spring les plus courantes..107
Annexe B : Bibliographie et références...109

Annexes...107

Introduction Générale

IV

 Au début des années 2000, le paysage du développement Java d'entreprise était structuré autour de la
plateforme J2EE (plus tard Java EE). Bien qu'elle ait établi un standard robuste, sa mise en œuvre était
souvent synonyme de complexité, de configurations XML lourdes et d'une forte dépendance à des
serveurs d'applications monolithiques. Cette rigidité constituait un frein notable à la productivité et à
l'agilité.

 En réponse directe à ces défis, le framework Spring a été introduit en 2003. Il a provoqué une
véritable rupture en proposant une alternative plus légère, fondée sur les principes d'Inversion de Contrôle
(IoC) et d'Injection de Dépendances (DI). En offrant une alternative plus simple aux EJB (Enterprise
JavaBeans), Spring a rapidement gagné en popularité, redonnant de la flexibilité aux développeurs.

 Cette quête de simplification a franchi une nouvelle étape décisive avec l'arrivée de Spring Boot.
En adoptant une philosophie radicale de "convention plutôt que configuration", Spring Boot élimine la
majorité du paramétrage initial grâce à des mécanismes d'auto-configuration et l'intégration de serveurs
embarqués. Cette approche a rendu possible le développement rapide d'applications autonomes,
notamment pour les architectures microservices. Parallèlement, Java EE a poursuivi sa propre
modernisation en devenant Jakarta EE sous l'égide de la Fondation Eclipse, avec une orientation plus
marquée vers le cloud, illustrant une tendance de fond de l'écosystème vers plus de légèreté et de rapidité.

 Dans l'écosystème dynamique du développement d'entreprise Java, la complexité croissante des
applications a rendu indispensable la transition de l'approche traditionnelle JEE vers des frameworks plus
agiles et productifs. Dans ce contexte, Spring Boot s'est imposé comme une solution incontournable pour
simplifier et accélérer le cycle de développement, devenant ainsi l'un des frameworks les plus influents et
adoptés du marché.

 Ce rapport a pour vocation de servir de guide pratique et complet à la maîtrise de Spring Boot.
 L'objectif principal est de démystifier ce framework en proposant un parcours d'apprentissage progressif,
partant des fondations de l'écosystème Spring et de ses concepts clés, pour aboutir à la mise en œuvre
d'une application robuste et conforme aux architectures d'entreprise modernes. Ainsi, ce document vise à
démontrer par la pratique comment Spring Boot facilite la création d'applications performantes en
s'appuyant sur les standards JEE tout en réduisant drastiquement la configuration requise.

 Il s'adresse à tout développeur ou étudiant possédant des connaissances fondamentales en
programmation orientée objet avec Java, ainsi qu'une familiarité avec les principes de base de
l'architecture JEE, et désireux de moderniser leurs compétences.

1. Évolution des applications d'entreprise : du JEE traditionnel
aux frameworks modernes

1-1 Frise chronologique. JEE et Spring

2. Présentation de Spring et Spring Boot

2.1. Le framework Spring : une fondation pour la productivité

V

 Lancé en 2003, le framework Spring a émergé comme une réponse innovante à la complexité de J2EE.
Ses principes fondateurs, l'Inversion de Contrôle (IoC) et l'Injection de Dépendances (DI), ont
révolutionné le développement Java en permettant de créer des applications faiblement couplées,
modulaires et aisément testables. Au-delà de son conteneur IoC (Spring Core), Spring s'est développé en
un écosystème vaste et modulaire, offrant une multitude de projets spécialisés pour adresser les diverses
facettes des applications d'entreprise :

❖ Spring Core : Le cœur du framework, fournissant le conteneur IoC/DI, la gestion des beans et
l'accès aux ressources.

VI

❖ Spring MVC / Spring WebFlux : Pour le développement d'applications web et d'APIs RESTful,
avec une approche basée sur les contrôleurs pour le premier, et une approche réactive
non-bloquante pour le second.

❖ Spring Data : Simplifie l'accès aux données avec une prise en charge uniforme de diverses
technologies de persistance, qu'il s'agisse de bases de données relationnelles (JPA, JDBC) ou
NoSQL (MongoDB, Redis, etc.), en générant les implémentations des dépôts de données
(repositories).

❖ Spring Security : Un framework puissant et flexible pour l'authentification, l'autorisation et la
protection des applications.

 D'autres projets comme Spring Batch (traitement par lots), Spring Cloud (développement de
microservices cloud-native) ou Spring Integration (intégration d'applications) complètent cet écosystème
riche.

 Vue d'ensemble de l'écosystème Spring et du rôle de Spring Boot 1-2 Diagramme.

2.2. Spring Boot : l'accélérateur de développement

VII

 Cependant, à mesure que l'écosystème Spring s'est enrichi, la configuration nécessaire pour orchestrer ses
différents modules pouvait elle-même devenir complexe. C'est pour répondre à ce défi que Spring Boot a été
créé. Il ne s'agit pas d'une réécriture de Spring, mais d'une surcouche intelligente qui adopte une approche
opiniâtre (opinionated) basée sur la "convention plutôt que configuration". Ses innovations majeures
incluent :

❖ L'auto-configuration : Spring Boot inspecte le classpath et configure automatiquement
l'application avec des paramètres par défaut pertinents.

❖ Les dépendances "starters" : Des descripteurs de dépendances simplifiés qui regroupent tout le
nécessaire pour une fonctionnalité donnée (ex: spring-boot-starter-web).

❖ Les serveurs applicatifs embarqués : La possibilité de créer des applications autonomes (fichiers
.jar exécutables) avec un serveur comme Tomcat ou Netty intégré, éliminant le besoin de
déploiements externes complexes.

 Il est essentiel de comprendre que Spring et Spring Boot ne sont pas des adversaires de l'écosystème JEE,
mais plutôt des facilitateurs qui en exploitent les standards. Loin de réinventer la roue, Spring Boot s'appuie
sur des spécifications standard comme JPA (via son implémentation Hibernate) pour la persistance ou l'API
Servlet pour les applications web. Il agit comme une surcouche pragmatique et productive qui utilise la
puissance des standards Java tout en masquant leur complexité inhérente, permettant ainsi aux développeurs
de se concentrer quasi exclusivement sur la logique métier.

 Afin de proposer un parcours d'apprentissage structuré et progressif, ce rapport est organisé en une suite
de chapitres logiques, allant de la configuration initiale à la réalisation d'un projet complet, puis à
l'exploration de concepts avancés.

❖ Chapitre 2 : Préparation de l'Environnement de Développement. Ce chapitre initial se veut un
guide purement pratique pour installer et configurer tous les outils indispensables (JDK, IDE,
Maven/Gradle) et pour prendre en main l'outil Spring Initializr afin de créer la structure d'un
premier projet.
❖ Chapitres 3 et 4 : Des Fondamentaux de Spring à la Simplicité de Spring Boot. Ces deux
chapitres posent les fondations théoriques. Nous y aborderons d'abord les principes fondateurs du
framework Spring – l'Inversion de Contrôle (IoC) et l'Injection de Dépendances (DI) – avant de
découvrir comment Spring Boot vient simplifier radicalement cet écosystème grâce à ses
mécanismes d'auto-configuration et ses dépendances "starters".
❖ Chapitres 5, 6 et 7 : Construction des couches applicatives. Le cœur du rapport se concentre sur
le développement des différentes couches d'une application moderne. Nous verrons comment
créer une API REST avec Spring MVC, gérer la persistance des données avec Spring Data JPA, et
enfin, comment sécuriser l'application avec Spring Security.

3.

2.3.

Structure du document

Positionnement dans l'écosystème JEE/Jakarta EE

❖

❖

❖

VIII

Chapitre 8 : Tests et Qualité du Code. La qualité étant un pilier du développement logiciel, ce
chapitre est entièrement consacré aux stratégies de test. Il couvre à la fois les tests unitaires avec des
outils comme JUnit et Mockito, et les tests d'intégration facilités par l'écosystème Spring.
Chapitre 9 : Étude de Cas Pratique: Application Complète. Ce chapitre majeur constitue la synthèse
de toutes les connaissances acquises. Il guidera le lecteur dans la réalisation, de A à Z, d’une
application fonctionnelle, depuis le cahier des charges et la conception jusqu'à l'implémentation et
au déploiement.
Chapitres 10 et 11 : Concepts Avancés et Conclusion. Pour ceux qui souhaitent approfondir le sujet,
un chapitre optionnel aborde des concepts avancés comme la gestion des exceptions ou le
monitoring. Enfin, la conclusion récapitulera les compétences clés acquises et offrira des ressources
pour continuer à progresser.

Chapitre 1. Préparation de l'Environnement
de Développement

1

d'exploitation de l'utilisateur.

L'installation des outils fondamentaux :

 Voici un tableau qui récapitule les exigences minimales pour la version
technologiques adoptés.

. Tableau des spécifications techniques

 et les choix

 Ce chapitre est dédié à la mise en place de l'environnement de travail technique qui servira de socle au
développement de la solution logicielle en utilisant l'architecture JEE (Jakarta EE) et le framework Spring
Boot. Il détaille les outils utilisés, les versions requises et la configuration initiale de l'environnement.

 Le JDK est essentiel car il contient le compilateur Java, l'environnement d'exécution (JRE) et les outils
nécessaires pour développer des applications Java.

● Version Recommandée : Java 17 (LTS) est la version minimale et privilégiée pour sa stabilité et
son support optimal par Spring Boot 4.0.0.

● Téléchargement et Installation : L'installation est réalisée à partir d'un fournisseur comme
Adoptium(Eclipse Temurin), via le téléchargement de l'installeur correspondant au système

1.2 Installation des Outils Nécessaires

1.1 Configuration Système Requise et Choix Technologiques

Figure 1-1

Spring Boot 4.0.0

JDK (Java Development Kit)

Configuration des Variables Clés

Vérification de l'Intégrité de l'Installation

Maven/Gradle : Outils de Construction (Build)

IDE (Environnement de Développement Intégré)

2

L'

Pour l’outil de build:

ou

JAVA_HOME : La variable a été définie pour pointer précisément vers le répertoire d'installation
de la version Java 17 (LTS). Cette étape assure la compatibilité avec Spring Boot 4.0.0.
PATH : Le chemin vers le sous-répertoire bin du JDK a été ajouté au PATH pour permettre
l'accès direct aux exécutables Java depuis la console.

○
○

3.6.3 ou version ultérieure.
8.x (8.14+) et 9.x.

 L'intégration de ces outils est assurée par l'IDE Eclipse et l'outil de génération de
projet (Spring Initializr), ce qui élimine le besoin d'une installation manuelle complexe pour la
plupart des environnements.

 La configuration de l'environnement de développement repose sur l'établissement des variables système
nécessaires pour garantir que l'outil de construction (Maven/Gradle) et l'IDE (Eclipse) utilisent la version
requise du JDK (Java 17).

 Ces outils de gestion de dépendances et de construction sont indispensables pour gérer les librairies
requises par Spring Boot et automatiser les tâches de build (compilation, tests, packaging).

 est l'outil central qui facilite l'écriture, la compilation, le débogage et le déploiement du code.

.
Eclipse est sélectionné pour son intégration approfondie dans l'écosystème JEE et

pour la disponibilité de ses extensions dédiées à Spring (Spring Tools).
La version adéquate est téléchargée depuis le site officiel d'Eclipse.

 L'intégrité de l'installation est validée par des commandes de vérification de version dans le terminal,
qui confirment que la version de Java et l'outil de build sont correctement référencés.

● Pour Java :

 VersionsSupportées :
Maven :
Gradle :

 Installation:

IDE

● ChoixAdopté:EclipseIDEforEnterpriseJavaandWebDevelopers
● Justification:

● Installation:

●

●

●

●

●

1.3 Configuration et Validation de l'Environnement

1.4 Création et Importation du Projet Fondateur

3

2.

3.

. Choix des métadonnées.

Figure 1-2.Spring initializr

Sélection du projet Maven, java et version de spring boot.

Figure 1-3. Choix des versions, projet.

Définition des métadonnées (Group, Artifact, Version de Spring Boot/Java 17).

 La création du projet est réalisée à l'aide de l'outil standard de l'écosystème Spring, suivi de son
importation dans l'IDE.

 Spring Initializr est le générateur de projets officiel, garantissant une structure de base propre et
conforme aux normes.

Utilisation de Spring Initializr

Figure 1-4

Processus de Génération :
1. Accès à start.spring.io.

●

● Structure Clé :

● Importation dans Eclipse :
Maven/Gradle Projects"
➔

➔

4

4.

5.

Figure 1-5. Ajout des dépendances.

Téléchargement du projet compressé au format ZIP.

 Structure Initiale du Projet sur Eclipse

Sélection des dépendances initiales (comme Spring Web pour la création d'API, Spring
Data JPA pour la persistance, etc).

Figure 1-6.Eclipse
Leprojetgénéréestimportédansl'IDEpourlancer le développement.

 La structure inclut le fichier de configuration de build (pom.xml ou build.gradle),
les répertoires src/main/java pour le code source et src/main/resources pour les fichiers de
configuration(commeapplication.properties).

Leprojet est importé via "File -> Import... -> Existing
.

CetteméthodepermetàEclipse d'indexer automatiquement le projet et de télécharger
touteslesdépendancesrequises, finalisant la préparation de l'environnement de
développement.
Exemple après l’importation :

Figure 1-7.

Structure de Projet et Importation dans Eclipse

Chapitre 2. Fondamentaux de Spring
Framework

2.1 Philosophie et principes de conception de Spring

Les problématiques résolues par Spring
 Spring est né à la fin des années 2000 pour répondre aux limites et douleurs du développement Java
«classique ». Voici les problèmes principaux et la façon dont Spring les adresse.

5

Avant (couplage) :

Après (DI via constructeur) :

 et Injection de Dépendances (DI) : Spring crée et assemble les
objets (beans) pour toi, et injecte les dépendances dans les composants.

Effet : on obtient des classes plus petites, axées sur la logique métier, et facilement testables via
des mocks.

Problème : Dans les applications traditionnelles, les classes créent et gèrent elles-mêmes leurs dépendances
(new ServiceImpl() partout). Résultat : difficile d’isoler une classe pour les tests, changement
d’implémentation délicat.

1. Couplage fort entre classes

Exemple simple (avant / après)

Solution Spring :

● Inversion deContrôle(IoC)

●

@Component
public class OrderController {

private final PaymentService paymentService;
public OrderController(PaymentService paymentService) {

this.paymentService = paymentService;
}

public class OrderController {
private PaymentService paymentService = new StripePaymentService();

}

}

2. Boilerplate et gestion
Problème : Beaucoup de code répétitif pour créer des connexions JDBC, configurer transactions, gérer
ressources, etc.

4. Architecture monolithique et rigidité

5. Difficulté d’intégration (technologies variées)

Problème : Intégrer JMS, AMQP, Web Services, batch, jobs planifiés, etc., impliquait souvent du glue code
complexe.

3. Cross-cutting concerns (préoccupations transverses)

Solution Spring :

Modules d’intégration

Problème :

Solution Spring :

● Architecture modulaire

● Spring Boot

besoin.

Gestion déclarative des transactions
transactionnel partout.

Solution Spring AOP (programmation orientée aspect)

 aspects

Solution Spring :

● Abstractions pour l’accès aux données (JdbcTemplate, Spring Data)

6

répétitif.

Problème : Sécurité,
polluent la logique.

logging,

 :

Permet d’extraire ces préoccupations transverses en
modifier la logique métier.

Applications monolithiques difficiles à modulariser et à faire évoluer.

(annotations ou configuration) pour ne pas écrire de code

qui réduisent le code

(advice, pointcuts), appliqués sans

et adaptateurs (Spring Integration, Spring Cloud, Spring Batch, Spring AMQP)
qui normalisent l’intégration et offrent des patterns prêts à l’emploi.

(choisissez les modules nécessaires).

:conventions et auto-configuration pour démarrer vite, tout en restant modulaire si

transactions, cache, monitoring s’imbriquent dans le code métier et

●

●

2. Spring AOP
 SpringAOP (Aspect-Oriented Programming) permet d’introduire la programmation orientée aspects afin de
traiter des préoccupations transversales comme la gestion des transactions, le logging, la sécurité ou la
collecte de métriques. L’utilisation de Spring AOP favorise une séparation nette des responsabilités, en
permettant de gérer ces aspects de manière centralisée sans polluer la logique métier.

3. Spring Data
 Spring Data fournit un ensemble d’abstractions pour simplifier l’accès aux données et réduire le code des
couches DAO ou repository. Grâce à des modules comme Spring Data JPA, MongoDB ou Redis, il est
possible de bénéficier d’implémentations automatiques de repository et d’exploiter des méthodes de
recherche prédéfinies. Cela accélère le développement et garantit des pratiques standardisées pour la
gestion de la persistance.

1. Spring Core
 Spring Core constitue le cœur du framework Spring et fournit les fondations essentielles pour toute
application Spring. Il implémente le principe d’Inversion of Control (IoC) et gère les beans via des
conteneurs comme BeanFactory ou ApplicationContext. Spring Core s’occupe également du cycle de vie des
beans, de leur création à leur destruction, et permet l’injection de dépendances, facilitant ainsi l’architecture
modulaire et la maintenabilité des applications.

7. Evolutivité et modernité

6. Configurations multiples et gestion des environnements

Problème : Comment gérer configurations pour dev/test/prod sans dupliquer ?

Problème :

Solution Spring :

Spring WebFlux
Spring Cloud

7

Besoin de réactivité,non-bloquant, microservices, déploiement cloud.

pour Web non bloquant (reactive).
pour patterns cloud (service discovery, configuration, circuit breaker, gateway).

Solution Spring Boot + Profiles + Properties/ConfigServer :

 Profiles (dev/prod/test) et sources de configuration (fichiers properties/YAML, variables d’environnement,

serveur de config) centralisent la configuration.

 Spring est conçu en modules distincts que tu peux combiner selon les besoins. Voici les modules
principaux, leur rôle et quand les utiliser.

 Spring Boot n’est pas un module isolé mais un éco-système qui assemble et configure automatiquement

les modules Spring pour démarrer rapidement.

Architecture modulaire de Spring

8. Spring Boot
 SpringBoot simplifie considérablement la configuration et le packaging des applications Spring. Il permet
d’exécuter les applications de manière autonome grâce à un serveur embarqué tel que Tomcat ou Jetty. Avec
ses fonctionnalités d’auto-configuration et ses starters (par exemple
spring-boot-starter-web ou spring-boot-starter-data-jpa), Spring Boot accélère le développement en
fournissant des valeurs par défaut et une structure standardisée, tout en restant flexible.

9. Spring Cloud
 Spring Cloud fournit un ensemble d’outils pour les architectures distribuées et les environnements cloud. Il
facilite la découverte de services, la centralisation des configurations via Config Server, la gestion des
gateways et des circuits breaker, et bien d’autres fonctionnalités. Ce module est particulièrement pertinent
dans le contexte des microservices et du déploiement sur des plateformes cloud comme Kubernetes ou
AWS.

7. Spring Security
 SpringSecurity fournit un cadre complet pour sécuriser les applications. Il gère l’authentification,
l’autorisation et la protection des endpoints, et prend en charge des protocoles modernes comme OAuth2 et
OpenID Connect. Ce module est essentiel pour sécuriser les APIs et les applications web, en garantissant la
protection des données et la conformité aux bonnes pratiques de sécurité.

6. Spring WebFlux
 Spring WebFlux introduit une approche réactive et non bloquante pour la création d’applications web.
Basé sur Project Reactor, il est conçu pour gérer des charges élevées et des opérations d’entrée/sortie
intensives. Contrairement à Spring MVC, WebFlux n’est pas un simple “upgrade”, mais une architecture
différente destinée à répondre à des besoins spécifiques de réactivité et de scalabilité.

4. Spring Transaction
 Le module Spring Transaction assure la gestion déclarative des transactions dans les applications,
principalement via l’annotation @Transactional. Cela permet de garantir la cohérence des opérations sur la
base de données et d’assurer le rollback automatique en cas d’exception, simplifiant ainsi la gestion de la
fiabilité et de l’intégrité des données.

5. Spring MVC / Web
 Spring MVC est un framework de type Model-View-Controller destiné à la création d’applications web
classiques. Il fournit des mécanismes pour définir des contrôleurs, gérer les vues et résoudre les requêtes
HTTP. Ce module est particulièrement adapté pour construire des applications RESTful ou des pages
serveur côté backend utilisant des technologies comme Thymeleaf ou JSP.

10. Spring Integration / Spring Batch / Spring AMQP / Spring Kafka
 Ces modules répondent àdesbesoins spécifiques. Spring Integration permet d’implémenter des patterns
d’intégration et de communication entre systèmes via des canaux de messages et des adaptateurs. Spring
Batch est conçu pour les traitements par lots, avec gestion des jobs, steps et restartabilité. Spring AMQP et
Spring Kafka facilitent la messagerie asynchrone et événementielle, idéale pour les architectures basées sur
les événements, les ETL ou les traitements batch.

8

12. Spring Test
 Spring Testfournit des utilitaires pour les tests unitaires et d’intégration dans le contexte Spring. Avec des
annotations comme @SpringBootTest et les slices de test, il facilite la création de tests rapides, isolés et
réalistes, permettant de vérifier le comportement des composants Spring tout en conservant un contexte
applicatif cohérent.

11. Spring Web Services
 Spring WebServices permet de créer et de consommer des services web SOAP. Il fournit des outils pour
exposer des endpoints SOAP, manipuler des messages XML et gérer les contrats WSDL, offrant ainsi une
approche robuste pour l’intégration via web services standards.

9

 Les modules Spring s’organisent de manière cohérente pour construire des applications modulaires et
maintenables. À la base, on retrouve Spring Core, le Context et la gestion des Beans, qui sont toujours
présents et constituent le socle de toute application Spring.

 Au-dessus de cette base se situe la couche métier, composée des services annotés @Service ou
@Component, qui contiennent la logique métier et orchestrent les opérations de l’application. L’accès aux
données est pris en charge par Spring Data ou JdbcTemplate, avec les repositories qui simplifient la
gestion de la persistance et des opérations sur les bases de données.

 Pour la partie Web ou API, Spring MVC ou Spring WebFlux expose les endpoints nécessaires,
permettant la communication avec les clients ou d’autres services. Les aspects transverses tels que la
sécurité et la programmation orientée aspects (AOP) sont gérés par Spring Security ou des aspects
personnalisés, apportant des fonctionnalités globales comme l’authentification, l’autorisation, le logging
et la gestion des transactions.

 Enfin, pour l’infrastructure et le déploiement, Spring Boot assure le démarrage rapide de l’application et
l’auto-configuration, tandis que Spring Cloud fournit des fonctionnalités avancées pour les architectures
microservices, comme la découverte des services ou la configuration centralisée. La couche test complète
cette architecture grâce à Spring Test, qui permet de valider les composants et de garantir la qualité et la
fiabilité du code.

 L’adoption de Spring apporte de nombreux bénéfices concrets pour le développement d’applications. Tout
d’abord, le découplage des composants facilite la maintenance et l’évolutivité du code, car chaque classe
peut évoluer indépendamment des autres. La testabilité est également améliorée : grâce à l’injection de
dépendances, il est possible de réaliser des tests unitaires et d’intégration plus simples et isolés. Spring
favorise également la productivité, en réduisant le code répétitif grâce aux starters et à l’auto-configuration,
permettant aux développeurs de se concentrer sur la logique métier.

Bénéfices concrets & Cas d’usage

Comment les modules s’articulent

10

 La réutilisabilité des composants est renforcée, chaque module pouvant être facilement remplacé ou
utilisé dans différents projets. Enfin, Spring contribue à la robustesse des applications, notamment par la
gestion intégrée des transactions, des retries ou d’autres mécanismes critiques pour la fiabilité des
systèmes.

 Ces bénéfices se traduisent concrètement dans de nombreux cas d’usage. Pour la création d’API REST
d’entreprise, on combine généralement Spring Boot avec Spring MVC, Spring Data JPA et Spring
Security. Pour les systèmes événementiels, on peut s’appuyer sur Spring Boot associé à Kafka ou AMQP
et Spring Integration. Les traitements batch utilisent quant à eux Spring Batch, tandis que les
architectures de microservices distribués tirent parti de Spring Cloud pour la découverte des services, la
gestion centralisée des configurations et l’implémentation de passerelles et de circuits de résilience.

 Il est recommandé de privilégier l’injection par constructeur dans les classes Spring. Cette approche
favorise l’immutabilité des objets et améliore considérablement la testabilité, car toutes les dépendances
nécessaires sont explicitement déclarées dès la création de l’objet.

 Une bonne architecture Spring nécessite également de séparer clairement les différentes couches de
l’application. Les controllers doivent uniquement orchestrer les requêtes et déléguer la logique métier aux
services, tandis que les repositories se chargent de l’accès aux données. Cette séparation favorise la lisibilité,
la maintenabilité et la réutilisabilité du code.

 Pour renforcer la flexibilité et permettre un découplage plus fort, il est conseillé d’utiliser des interfaces
pour les services. Cela facilite le remplacement d’implémentations et les tests unitaires, tout en respectant
le principe de programmation orientée interface.

 Dans les controllers, il faut limiter la logique métier. Les controllers doivent agir comme des
coordinateurs, orchestrant les appels aux services plutôt que de contenir des calculs ou des règles complexes.
Cela rend le code plus clair et simplifie sa maintenance.

 L’utilisation de Spring Boot est fortement recommandée pour accélérer le démarrage des projets et
bénéficier de l’auto-configuration. Cependant, il reste important de comprendre quelles configurations sont
appliquées automatiquement pour éviter des comportements inattendus ou des conflits. La gestion du scope
des beans est également un point important : par défaut, les beans sont singleton, ce qui signifie qu’une seule
instance est partagée dans l’application. Dans certains cas spécifiques, un scope prototype peut être utilisé
pour créer une nouvelle instance à chaque demande.

 Enfin, il est conseillé d’utiliser les profiles Spring (dev, test, prod)pour gérer les configurations spécifiques
à chaque environnement. Cette approche centralise les paramètres et évite la duplication ou les erreurs liées
à la modification manuelle des configurations lors du passage d’un environnement à un autre.

Quelques bonnes pratiques architecturales liées à la philosophie Spring

2.2. Inversion de Contrôle (IoC)

 L’Inversion de Contrôle constitue le principe fondamental sur lequel repose Spring Framework. Ce
mécanisme permet au framework de prendre en charge la création, l’assemblage et la gestion des
composants applicatifs, ce qui favorise une architecture modulaire, maintenable et facilement testable.

11

 Le conteneur Spring IoC est l’élément chargé de créer les objets, de résoudre leurs dépendances et de
gérer leur durée de vie.

 Le conteneur Spring constitue le cœur de l’architecture Spring et assure la gestion complète des
composants de l’application. Il est responsable de l’instanciation des objets déclarés comme beans et de

 L’Inversion de Contrôle (IoC) est un principe d’architecture logicielle selon lequel la responsabilité de
créer et de gérer les objets n’est plus assurée par le code métier mais par un conteneur externe. Dans le
contexte de Spring, ce rôle est rempli par le conteneur IoC.

 Au lieu de créer explicitement leurs dépendances au moyen de l’instruction new, les composants
déclarent uniquement ce dont ils ont besoin. C’est le conteneur Spring qui se charge ensuite de fournir les
instances nécessaires.

 Habituellement, les objets contrôlent leur propre flux d'exécution et instancient directement leurs
dépendances. L’IoC inverse ce mécanisme : le framework prend le contrôle du cycle d'exécution et de la
gestion des objets. Les composants deviennent ainsi passifs dans leur création et actifs seulement dans
l’exécution de leur logique métier.

 L’utilisation de Spring et de l’injection de dépendances permet de réduire fortement le couplage entre les
classes, chaque composant pouvant se concentrer sur sa propre responsabilité sans dépendre directement des
implémentations des autres. Cette approche favorise une meilleure maintenabilité et modularité du code,
rendant les applications plus faciles à faire évoluer et à organiser.

 Elle simplifie également les tests unitaires, car il devient possible d’injecter des dépendances simulées
(mocks) pour isoler chaque composant et tester son comportement indépendamment du reste de
l’application. En outre, Spring permet une centralisation et une uniformisation de la configuration, évitant
la duplication de paramètres et facilitant la gestion des différents environnements. Enfin, cette architecture
favorise la réutilisabilité des composants, qui peuvent être utilisés dans différents modules ou projets sans
modification, grâce à leur faible dépendance aux autres classes et à la clarté de leur interface.

Concept théorique : Qu’est-ce que l’IoC ?

1. Définition

Le Conteneur Spring : ApplicationContext

3. Avantages de l’IoC

1. Rôle du conteneur

2. Origine du terme "Inversion"

12

Le conteneur crée l’objet en appelant son constructeur.

Un bean est un objet géré par Spring. Son cycle de vie complet comprend les étapes suivantes :

 Spring analyse les fichiers XML, les annotations ou les classes Java annotées pour identifier les beans à
gérer.

ApplicationContext est l’interface principale du conteneur IoC.

Ses implémentations les plus courantes sont :

● ClassPathXmlApplicationContext : configuration basée sur XML ;

● AnnotationConfigApplicationContext : configuration basée sur les annotations ou les
classes Java annotées ;

● implémentations spécialisées utilisées par Spring Boot pour les applications Web embarquées.

l’injection automatique des dépendances nécessaires pour leur fonctionnement. Le conteneur gère également
le cycle de vie des beans, depuis leur création jusqu’à leur destruction, tout en appliquant les mécanismes
transverses tels que l’AOP pour la gestion des aspects comme le logging, la sécurité ou les transactions.

 De plus, le conteneur Spring est capable de lire et d’interpréter les configurations, qu’elles soient définies
en XML, via des annotations ou avec des classes de configuration Java. Il offre également une série de
services supplémentaires facilitant le développement d’applications robustes, tels que l’internationalisation,
la gestion des événements applicatifs ou le chargement centralisé des ressources. Grâce à ces fonctionnalités,
le conteneur Spring permet de simplifier la construction, la configuration et la maintenance des applications
tout en garantissant une architecture cohérente et modulable.

2. Instanciation

2. ApplicationContext

1. Chargement de la configuration

ApplicationContext context =
new AnnotationConfigApplicationContext(AppConfig.class);

MyService service = context.getBean(MyService.class);
service.process();

Cycle de vie des beans

7. Destruction

Lors de l’arrêt du contexte, Spring exécute :

5. Initialisation

Le conteneur appelle les mécanismes d’initialisation :

4. Post-traitements
 Les BeanPostProcessor permettent d’intercepter ou de modifier les beans après leur création mais avant
leur initialisation. C’est à ce stade que les proxys AOP sont générés.

6. Phase d’utilisation
Le bean est pleinement opérationnel et peut être utilisé dans l’application.

1. Configuration XML

C’est la méthode historique où les définitions de beans sont déclarées dans des fichiers XML.

3. Injection des dépendances
 Les dépendances nécessaires au bean sont injectées selon le mode défini (constructeur, méthodes setters
ou champs).

13

● méthode annotée @PostConstruct ;
● méthode d’initialisation spécifiée dans la configuration ;
● implémentation éventuelle de l’interface

● la méthode annotée @PreDestroy ;

● la méthode de destruction déclarée dans la configuration ;

● l’interface DisposableBean si elle est implémentée.

Exemple :

Spring propose trois grands modèles de configuration. Chacun présente un niveau de flexibilité distinct.

InitializingBean.

Configuration Spring : XML, Annotations, Java Config

<bean id="myService" class="com.example.MyService"/>

14

Caractéristiques :

● Contrôle total par la programmation ;
● Vérification des erreurs à la compilation ;
●
●

Intégration naturelle avec Spring Boot ;
Gestion centralisée et lisible de la configuration.

Caractéristiques :

● Séparation stricte entre code et configuration ;

● Procédure généralement plus verbeuse ;

● Utilisée principalement dans les projets existants ou pour des besoins très spécifiques.

 Introduite avec Spring 2.5, elle permet d’annoter directement les classes pour que Spring les détecte
automatiquement. Par exemple :

 Méthode recommandée, introduite avec Spring 3, qui permet de configurer Spring via des classes Java
annotées.

Exemple :

2. Configuration basée sur les annotations

3. Java Config (Configuration par classes Java)

@Component
public class MyService {}

@Autowired
private MyService myService;

@Configuration
public class AppConfig {

@Bean
public MyService myService() {

return new MyService();
}

}

Comparaison synthétique

Principe de la DI et ses avantages

Types d’injection : constructeur, setter et field

Critère

Niveaudemodernité

Lisibilité

Flexibilité

Usage dansSpring Boot

Utilisationrecommandée

XML

Faible

Moyenne

Élevée

Rare

Projets existants

Annotations

Élevé

 Bonne

Moyenne

Fréquent

Projets courants

Java Config

15

Très élevé

Excellente

Très élevée

Privilégié

Projets modernes

 L’injection de dépendances (Dependency Injection, DI) est un mécanisme fondamental de Spring permettant
de déléguer la création et la gestion des objets au conteneur IoC. Au lieu qu'une classe instancie elle-même
ses dépendances, celles-ci lui sont fournies de l’extérieur. Cette approche améliore la modularité et réduit
fortement le couplage entre les composants.

Les principaux avantages de la DI sont :

● Réduction du couplage : les classes ne dépendent plus directement de l’implémentation mais
d’interfaces ou d’abstractions.

● Facilité de test : les dépendances peuvent être remplacées par des mocks ou des doublures.
● Réutilisabilité accrue : les composants deviennent plus génériques et indépendants.
● Configuration centralisée : toutes les dépendances sont gérées par Spring, ce qui évite les

instanciations répétitives.
● Évolution facilitée : changer une implémentation ne nécessite aucune modification dans les

classes consommatrices.

 L’injection par constructeur consiste à passer les dépendances d’une classe directement via son
constructeur. Cette approche présente plusieurs avantages importants : elle assure que toutes les
dépendances nécessaires sont fournies, garantissant ainsi que l’objet est correctement initialisé dès sa
création. Elle favorise également l’immuabilité des objets, car les dépendances peuvent être déclarées
final et ne peuvent pas être modifiées après l’instanciation. Pour ces raisons, l’injection par

2.3 Injection de Dépendances (DI)

1. Injection par constructeur

16

constructeur est particulièrement
cohérence des dépendances sont essentielles.

, où la fiabilité et la

 L’injection par setter consiste à fournir les dépendances d’une classe via des méthodes publiques de type
setter. Cette approche est particulièrement adaptée pour les dépendances optionnelles, qui ne sont pas
indispensables lors de la création de l’objet. Elle est également utile lorsque la dépendance peut changer
après l’instanciation, offrant ainsi plus de flexibilité. Cependant, cette méthode est moins stricte que
l’injection par constructeur, car il n’est pas garanti que toutes les dépendances soient présentes au moment
de la création de l’objet.

 L’injection par champ consiste à laisser Spring injecter directement les dépendances dans les attributs
annotés de la classe, généralement avec @Autowired. Cette approche présente l’avantage d’une syntaxe
simple et rapide, car il n’est pas nécessaire d’écrire des constructeurs ou des setters. Cependant, elle est
déconseillée dans les projets professionnels, car elle complique les tests unitaires et empêche l’immuabilité
des objets. Pour cette raison, l’injection par champ ne devrait être utilisée que de manière exceptionnelle,
lorsque la simplicité prime sur la testabilité ou la flexibilité.

Exemple (Spring Boot) :

recommandée pour les composants critiques

@Service
public class OrderService {

private final PaymentService paymentService;

public OrderService(PaymentService paymentService) {
this.paymentService = paymentService;

}
}

@Service
public class NotificationService {

private EmailService emailService;

@Autowired
public void setEmailService(EmailService emailService) {

this.emailService = emailService;
}

}

2. Injection par setter

3. Injection par champ (field injection)

@Service
public class ReportService {

@Autowired
private DataService dataService;

}

Bonnes pratiques d’injection
Spring recommande plusieurs règles pour garantir un code maintenable :

Mécanismes d’Autowiring (@Autowired, @Qualifier)
 L’autowiring est une fonctionnalité permettant à Spring de résoudre automatiquement les dépendances entre
les composants. Le développeur n’a pas besoin d’instancier ou de configurer explicitement les objets :
Spring le fait en fonction du type des dépendances.

17

Indique à Spring d’injecter automatiquement la dépendance requise.

● Peut être utilisé sur :
○
○

un constructeur,
un setter,

○ un champ,
○ une méthode.

Spring recherche un bean compatible par son type.

1. Privilégier l’injection par constructeur pour les dépendances principales.

2. Limiter l’injection par champ, principalement utilisée dans les projets simples ou dans les tests.

3. Utiliser des interfaces lorsque c’est pertinent pour réduire le couplage.

4. Éviter la logique métier dans les constructeurs, qui doivent uniquement recevoir les
dépendances.

5. Ne pas multiplier les dépendances : si une classe nécessite trop de services externes, cela peut
indiquer un problème de conception.

3.4 Autowiring

1. @Autowired

2. @Qualifier
Permet de résoudre les ambiguïtés lorsqu’il existe plusieurs beans du même type.

1. @Component
Annotation générique permettant de déclarer un bean géré par Spring.

18

Ici, Spring injectera spécifiquement le bean nommé

 Ces annotations indiquent à Spring que les classes doivent être détectées automatiquement via le
mécanisme de scan de composants.

 Lorsque plusieurs implémentations du même type existent, Spring ne peut pas déterminer lequel injecter.
Dans ce cas :

1. @Qualifier identifie explicitement le bean désiré.

2. @Primary définit une implémentation par défaut.

3. Le nom du bean peut être utilisé implicitement si aucune annotation n’est fournie.

@Service
publicclass BillingService {

@Autowired
@Qualifier("paypalService")
private PaymentService paymentService;

}

Exemple avec @Primary :
 @Service
@Primary
public class StripePaymentService implements PaymentService { }

paypalService.

Résolution des ambiguïtés

@Component, @Service, @Repository, @Controller

19

 Spécialisation de @Component pour les services métiers.Elle indique que la classe contient la logique
applicative.

 Utilisée dans Spring MVC pour indiquer qu’une classe gère les requêtes HTTP. Elle expose des points
d’entrée via des méthodes annotées comme @GetMapping ou @PostMapping.

 Annotation indiquant une classe d’accès aux données. Elle gère automatiquement certains aspects tels
que la traduction des exceptions JDBC.

4. @Controller

3. @Repository

2. @Service

Chapitre 3. Spring Boot : Simplification du
Développement
 Alors que le framework Spring esttrès puissant,il peut devenir complexe à configurer lorsque l’application
commence à grandir. Spring Boot apporte une approche plus simple et plus rapide grâce à des mécanismes
comme l’auto-configuration, les starters, un système de configuration centralisé et différents outils
destinés à améliorer la productivité du développeur. Dans ce chapitre, nous allons découvrir comment Spring
Boot simplifie la création d’applications Java, en particulier pour les projets JEE modernes.

20

 Spring Boot est un framework opinionated, c’est-à-dire qu’il propose des choix par défaut afin de faciliter
le travail du développeur. Son objectif principal est de permettre de créer rapidement des applications
basées sur Spring, sans avoir à répéter les mêmes configurations techniques à chaque nouveau projet. Au
lieu d’écrire du code de configuration répétitif et souvent complexe, Spring Boot fournit un ensemble de
mécanismes qui automatisent cette configuration et permettent au développeur de se concentrer uniquement
sur la logique métier. Les fonctionnalités clés de Spring Boot incluent :

 Spring Boot propose de nombreux modules appelés starters, qui permettent de démarrer rapidement avec
les technologies les plus courantes telles que Spring MVC, JPA, MongoDB, Spring Batch, Spring Security
etc.
 Ces starters sont préconfigurés avec les dépendances de bibliothèques les plus utilisées, ce qui évite au

développeur de devoir chercher manuellement les versions compatibles et de les configurer une par une.
 Par exemple, le module spring-boot-starter-data-jpa regroupe toutes les dépendances nécessaires pour
utiliser Spring Data JPA, ainsi que les bibliothèques d’Hibernate, car Hibernate est l’implémentation JPA
la plus couramment utilisée.

Les Spring Boot Starters

L’auto-configuration

Une gestion de configuration élégante et centralisée

Spring Boot Actuator

Le support des serveurs embarqués

3.1 Qu'est-ce que Spring Boot ?

●

●

●

●

●

Spring Boot Starters

 Note Vous pouvez trouver la liste complète de tous les starters Spring Boot disponibles
par défaut dans la documentation officielle à l’adresse suivante:

http://docs.spring.io/spring-boot/docs/current/reference/htmlsing
le/ #using-boot-starter-poms.

Spring Boot Autoconfiguration

 Spring Boot résout le problème de la configuration complexe des applications Spring en éliminant la
nécessité de définir manuellement toutes les configurations répétitives (boilerplate configuration).

Gestion de Configuration Élégante
 Spring permet déjà d’externaliser les propriétés configurables grâce à l’annotation @PropertySource.
Spring Boot va encore plus loin en proposant des valeurs par défaut pertinentes ainsi qu’un système puissant
de liaison de propriétés typées, permettant d’associer directement les valeurs de configuration aux
propriétés d’un bean.

21

 Il adopte une approche dite opinionated, ce qui signifie qu’il fait des choix par défaut pour faciliter la
mise en place de l’application. Spring Boot configure automatiquement différents composants en
enregistrant des beans selon plusieurs critères, tels que :

● La présence d’une classe spécifique dans le classpath

● La présence ou l’absence d’un bean Spring particulier

● L’existence d’une propriété système

● L’absence d’un fichier de configuration

 Par exemple, Si vous avez la dépendance spring-webmvc dans votre classpath, Spring Boot suppose
que vous souhaitez créer une application web basée sur Spring MVC et enregistre automatiquement le
DispatcherServlet, sauf s’il a déjà été défini.
 Si un driver de base de données embarquée comme H2 ou HSQL est présent dans le classpath, et que
vous n’avez pas configuré explicitement de bean DataSource, Spring Boot créera automatiquement un
DataSource en utilisant une base de données en mémoire.

Il offre également la possibilité de gérer facilement plusieurs fichiers de configuration selon les profils
(dev, test, prod), sans avoir besoin d’une configuration complexe.

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/%20#using-boot-starter-poms.
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/%20#using-boot-starter-poms.

Spring Boot Actuator
 Avoir une visibilité claire sur une application en production est essentiel pour garantir sa stabilité et
détecter les problèmes rapidement.

Support des Serveurs Embarqués

 Traditionnellement, le développement d’applications web en Java nécessitait la création de modules de
type WAR, puis leur déploiement sur des serveurs externes tels que Tomcat, WildFly, etc.Avec Spring
Boot, ce n’est plus nécessaire.Vous pouvez créer un module JAR et embarquer directement le conteneur
servlet dans l’application. L’application devient alors une unité de déploiement autonome, facile à exécuter
et à transporter.Pendant le développement, il est également possible de lancer facilement l’application
Spring Boot (au format JAR) directement depuis l’IDE ou depuis la ligne de commande, à l’aide d’outils
comme Maven ou Gradle.

Créer Le Projet Avec Spring Initializr

22

Vous pouvez accéder à l’adresse
du projet, comme illustré dans la Figure 3-1.

 depuis votre navigateur pour consulter les détails

 Il existe plusieurs façons de créer une application Spring Boot. La méthode la plus simple consiste à
utiliser Spring Initializr via l’adresse start.spring.io, qui est un générateur en ligne d’applications Spring
Boot.
 Dans cette section, nous verrons comment créer une application web Spring Boot simple, capable de
servir une page HTML, et nous explorerons les différents éléments qui composent une application
Spring Boot typique.

 Le module Spring Boot Actuator fournit un ensemble complet de fonctionnalités prêtes à l’emploi, sans
nécessiter beaucoup de code ou de configuration.Parmi les fonctionnalités principales de l’Actuator, on peut
citer :

● La consultation des détails de configuration des beans

● L’affichage des mappings d’URL, des informations d’environnement et des valeurs des
paramètres de configuration

● L’accès aux métriques de santé et aux indicateurs de performance de l’application

3.2 Explorez Votre Première Application Spring Boot

start.spring.io

http://start.spring.io/
http://start.spring.io/
http://start.spring.io/

Figure 3-1. Spring Initializr

23

1.
2.

Sélectionnez Maven Project et la version de Spring Boot
Saisissez les informations du projet Maven comme suit :

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

Group :
Langage :
Artifact :
Name :
Package Name :
Packaging :
Version Java :

3. Vous pouvez rechercher directement les starters si vous connaissez leur nom. Vous verrez de
nombreux modules regroupés par catégorie, comme Core, Web, Data, etc. Sélectionner Spring
Web dans la catégorie Web. Cliquez sur le bouton Generate.

4.

Vous pouvez maintenant extraire le fichier ZIP téléchargé et l’importer dans votre IDE préféré.

com.mycompany
Java
springboot-basic

springboot-basic
com.mycompany.springboot-basic

JAR
17

Cliquez sur le bouton Generate.

Exploration du Projet
 Maintenant que vous avez créé un projet Spring Boot basé sur Maven avec le starter Web, vous êtes prêt à
explorer le contenu de l’application générée.

24

1. Tout d’abord, jetezun œil au fichier pom.xml .

 pom.xmlListing 3-1. Fichier
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.5.7</version>
<relativePath/> <!-- lookup parent from repository -->

</parent>

<groupId>com.mycompany</groupId>
<artifactId>springboot-basic</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>springboot-basic</name>
<description>Demo project for Spring Boot</description>
<url/>

<licenses>
<license/>

</licenses>

<developers>
<developer/>

</developers>

<scm>
<connection/>
<developerConnection/>
<tag/> <url/>

</scm>

<properties>
<java.version>17</java.version>

</properties>

<dependencies>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>

</dependency>
</dependencies>

<build>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>

</plugin>
</plugins>

</build>

</project>

25

 La première chose à noter est que le module Maven springboot-basic hérite du module spring-boot-
starter-parent. En héritant de ce module parent, le nouveau module bénéficie automatiquement des
avantages suivants :

● Version Spring Boot centralisée : vous n’avez besoin de spécifier la version de Spring Boot
qu’une seule fois dans la configuration du module parent. Il n’est pas nécessaire d’indiquer la
version pour tous les starters et autres bibliothèques de support. Pour consulter la liste de ces
bibliothèques, vous pouvez consulter le fichier pom.xml du module Maven
org.springframework.boot:spring-boot-dependencies:{version}.

● Plugins Maven préconfigurés : le module parent spring-boot-starter-parent inclut déjà les plugins
Maven les plus couramment utilisés, tels que maven-jar-plugin, maven-surefire-plugin, maven-war-
plugin, exec-maven-plugin et maven-resources-plugin, avec des valeurs par défaut pertinentes.

● Construction de JAR “fat” : en plus des plugins mentionnés, le module parent configure
également le spring-boot-maven-plugin, utilisé pour créer des JAR auto-exécutables (fat JAR).

:

26

 Ici, la classe SpringbootBasicApplication est annotée avec @SpringBootApplication, qui est une
annotation composée.

 2. Le module Spring Boot généré de type JAR contient une classe Java servant de point d’entrée
à l’application, appelée SpringbootBasicApplication.java, avec la méthode public static void
main(String[] args).C’est cette méthode que vous pouvez exécuter pour démarrer l’application.

 Dans cet exemple, seul le starter Webaété sélectionné, mais le starter de test est inclus par défaut.

La version Java choisie est , ce quiexplique la présence de la propriété suivante dans le

 Cette valeur est utilisée pour configurer la version du JDK pour le compilateur Maven dans le module
spring-boot-starter-parent:

}

17

 <java.version>17</java.version>

<maven.compiler.source>${java.version}</maven.compiler.source>
<maven.compiler.target>${java.version}</maven.compiler.target>

package com.mycompany.springboot_basic;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class SpringbootBasicApplication {

public static void main(String[] args) {
SpringApplication.run(SpringbootBasicApplication.class, args);

}

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
@SpringBootConfiguration
@EnableAutoConfiguration
@ComponentScan(excludeFilters = {
@Filter(type = FilterType.CUSTOM, classes = TypeExcludeFilter.class),

@Filter(type = FilterType.CUSTOM, classes = AutoConfigurationExcludeFilter.class)

 com.mycompany.springboot_basic

pom.xml

Listing 3-2.

})
public @interface SpringBootApplication {

// ...
}

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Configuration
public @interface SpringBootConfiguration {
}

packagecom.mycompany.springboot_basic;
importorg.springframework.stereotype.Controller;
importorg.springframework.ui.Model;
importorg.springframework.web.bind.annotation.RequestMapping;
@Controller
publicclass HomeController{

@RequestMapping("/")
publicString home(Model model) {

return "index.html";

}
}

27

l’annotationL’annotation est

Voici la signification de ces annotations :
● @Configuration : indique que cette classe est une classe de configuration Spring.

● @ComponentScan : active le scan des composants pour détecter automatiquement les beans
Spring dans le package où la classe actuelle est définie.

● @EnableAutoConfiguration : déclenche les mécanismes d’auto-configuration de Spring
Boot.

 L’application est initialisée en appelant la méthode
SpringApplication.run(SpringbootBasicApplication.class, args)dans la méthode main(). Il est possible de
passer une ou plusieurs classes de configuration Spring à la méthode SpringApplication.run().Cependant, si
la classe de point d’entrée de votre application se trouve dans le package racine, il suffit de passer
uniquement cette classe. Spring Boot se charge alors de scanner automatiquement toutes les autres classes
de configuration Spring présentes dans les sous-packages.

3. Créez maintenant un contrôleur Spring MVC simple, appelé HomeController.java.

elle-même une annotation composée, utilisant

 HomeController.java

@SpringBootConfiguration
@Configuration de Spring .

Listing 3-3.

28

 Les applications Spring Boot doivent disposer d’une classe point d’entrée contenant la méthode :
public static void main(String[] args)
 Cette classe est généralement annotée avec @SpringBootApplication et sert à initialiser
l’application (bootstrap).
 Il est fortement recommandé de placer la classe point d’entrée dans le package racine, par
exemple com.mycompany.myproject, afin que les annotations @EnableAutoConfiguration et
scannent automatiquement les beans Spring, les entités JPA, etc., dans le package racine et tous ses
sous-packages.
 Si la classe point d’entrée se trouve dans un package imbriqué, il est nécessaire de spécifier
explicitement les packages à scanner pour les composants Spring.

 Il s’agit d’un contrôleur Spring MVC simple comportant une méthode de gestion des requêtes pour
l’URL /, qui retourne la vue nommée index.html.

4. Créez une vue HTML appelée index.html.

 Par défaut, Spring Boot sert le contenu statique depuis les répertoires src/main/public/ et
.Créez donc le fichier index.html dans src/main/public/.

Maintenant, depuis votre IDE, exécutez la méthode SpringbootBasicApplication.main() en tant
que classe Java autonome.
Cela démarrera le serveur Tomcat embarqué sur le port 8080. Ensuite, ouvrez votre navigateur et

rendez-vous à l’adresse :http://localhost:8080/.Vous devriez voir la réponse : Hello World!!

Il est également possible de lancer l’application Spring Boot en utilisant le plugin Maven
spring-boot-maven-plugin, avec la commande suivante :

src/main/static/

Listing 3-4. index.html

mvn spring-boot:run

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
<title>Home</title>
</head>
<body>
<h2>Hello World!!</h2>
</body>
</html>

La Classe Point d’Entrée de l’Application

http://localhost:8080/
http://localhost:8080/

Listing 3.5. Classe principale
package non racine

 dans un com.mycompany.myproject.config.Application.java

mvn clean package

package com.mycompany.myproject.config;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.context.annotation.Configuration;
import org.springframework.boot.autoconfigure.domain.EntityScan;
import org.springframework.context.annotation.ComponentScan;

@Configuration
@EnableAutoConfiguration
@ComponentScan(basePackages = "com.mycompany.myproject")
@EntityScan(basePackageClasses = Person.class)
publicclass Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}
}

29

● springboot-basic-1.0-SNAPSHOT.jar.original : contient uniquement les classes compilées et les ressources du
classpath.

springboot-basic-1.0-SNAPSHOT.jar : contient tout ce qui est nécessaire pour exécuter l’application
Spring Boot :

 Dans cet exemple, la classe Application.java se trouve dans le package com.mycompany.myproject.config,
qui n’est pas le package racine.
 Il est donc nécessaire de spécifier @ComponentScan(basePackages = "com.mycompany.myproject") pour
que Spring Boot scanne le package racine et tous ses
sous-packages à la recherche des composants Spring et utiliser @EntityScan(basePackageClasses =
Person.class) pour que Spring Boot détecte les entités JPA dans le package où se trouve la classe
Person.class.

Après compilation, deux fichiers intéressants apparaissent dans le répertoire target :

●

 Pendant le développement, vous pouvez exécuter votre application directement depuis l’IDE ou utiliser la
commande Maven : mvn spring-boot:run. Cependant, pour la production, il est nécessaire de créer une
unité de déploiement autonome pouvant être exécutée sans IDE.Le spring-boot-maven-plugin permet de
créer une unité de déploiement unique (fat JAR) en exécutant les commandes Maven suivantes :

Création Fat JAR avec le Spring Boot Maven Plugin d’un

○

○
○

30

Les classes compilées de votre code source (src/main/java) et les ressources statiques
(src/main/resources) se trouvent dans le répertoire BOOT-INF/classes.
Tous les JAR dépendants sont dans .
Les classes du package org.springframework.boot.loader, qui assurent la magie
Spring Boot permettant d’exécuter l’application.

 Lors du développement d’applications basées sur Spring, il peut être nécessaire d’enregistrer des beans de
manière conditionnelle.Par exemple, vous pourriez vouloir enregistrer un bean DataSource pointant vers la
base de données DEV lorsque vous exécutez l’application localement, et vers une base de données
PRODUCTION lorsque l’application est déployée en production.

.

 Maintenant que vous savez comment créer une application Spring Boot simple et l’exécuter, il est
intéressant de comprendre le fonctionnement de l’auto-configuration de Spring Boot qui simplifie
considérablement la configuration des applications Spring. Cette approche réduit le temps de développement
et limite les erreurs liées à une configuration manuelle complexe.

 Avant cela, il est important de connaître la fonctionnalité @Conditional de Spring, sur laquelle repose
entièrement le mécanisme d’auto-configuration.

 Le principe fondamental de l’auto-configuration est celui du “convention over configuration” (ou
convention plutôt que configuration).Autrement dit, Spring Boot applique des paramètres par défaut
pertinents pour la majorité des scénarios d’usage, de sorte que le développeur n’ait pas à configurer chaque
détail manuellement.Par exemple, si vous ajoutez la dépendance spring-boot-starter-web dans votre projet,
Spring Boot suppose que vous voulez créer une application web Spring MVC et configure automatiquement
un DispatcherServlet, un serveur embarqué Tomcat et d’autres
composants nécessaires.

 Il est possible de créer des JAR autonomes en utilisant des plugins comme maven-shade-plugin, qui
empaquettent toutes les classes dépendantes dans un seul JAR.
 Spring Boot adopte une approche différente : il permet d' imbriquer les JAR directement dans le JAR

Spring Boot.
Pour plus de détails, vous pouvez consulter : Documentation Spring Boot – Fat JAR exécutable.

Pour exécuter l’application, utilisez la commande suivante :

BOOT-INF/lib

java -jar springboot-basic-1.0-SNAPSHOT.jar

3.3 Auto-Configuration

Explorer La Puissance de

Principe du “Convention Over Configuration”

@Conditional

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#executable-jar
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#executable-jar

31

Avec cette configuration, il est possible de spécifier le profil actif via la propriété système :

 Cette approche fonctionne bien pour des cas simples, comme activer ou désactiver l’enregistrement de
beans selon le profil activé.Mais si vous souhaitez enregistrer des beans selon une logique conditionnelle
plus complexe, l’utilisation des profils seuls n’est pas suffisante.

Pour offrir une flexibilité beaucoup plus grande, Spring 4 a introduit le concept de @Conditional.
Avec cette approche, vous pouvez enregistrer un bean de manière conditionnelle en fonction de n’importe
quelle condition arbitraire.

Par exemple, vous pouvez enregistrer un bean lorsque :
●
●

Une classe spécifique est présente dans le classpath
Un bean Spring d’un certain type n’est pas déjà enregistré dans le
ApplicationContext

● Un fichier spécifique existe à un emplacement donné
● Une propriété spécifique est configurée dans un fichier de configuration
● Une propriété système spécifique est présente ou absente.

Ce ne sont que quelques exemples : il est possible de définir toute condition souhaitée.

 Il est possible d’externaliser les paramètres de connexion à la base de données dans des fichiers de
propriétés et de sélectionner le fichier correspondant à l’environnement. Cependant, cela oblige à modifier la
configuration et à redéployer l’application chaque fois que vous souhaitez changer d’environnement.

 Pour résoudre ce problème, Spring 3.1 a introduit le concept de profils.Vous pouvez enregistrer plusieurs
beans du même type et les associer à un ou plusieurs profils. Lors de l’exécution de l’application, vous
activez le(s) profil(s) souhaité(s), et seuls les beans associés aux profils activés seront enregistrés.

 Configuration des DataSources par profil avec Spring Listing 3-6.

-Dspring.profiles.active=DEV

@Configuration
public class AppConfig {

@Bean
@Profile("DEV")
public DataSource devDataSource() {

// configuration DEV
}

@Bean
@Profile("PROD")
public DataSource prodDataSource() {

// configuration PROD
}

}

Conditionnement Basé Sur Les Propriétés Système

32

 Dans une application, il est souvent nécessaire de choisir dynamiquement entre plusieurs
implémentations selon l'environnement d'exécution. Par exemple, utiliser une base de données MySQL en
production et MongoDB en développement.
Considérons une interface UserDAO avec deux implémentations : JdbcUserDAO pour MySQL et
MongoUserDAO pour MongoDB.

Listing 3-1. Interface UserDAO , et implementations JdbcUserDAO MongoUserDAO

 MySQLDatabaseTypeCondition.java MongoDBDatabaseTypeCondition.java

Listing 3-2.

// Condition pour MySQL
public class MySQLDatabaseTypeCondition implements Condition {

@Override
public boolean matches(ConditionContext conditionContext,

AnnotatedTypeMetadata metadata) {
String enabledDBType = System.getProperty("dbType");
return (enabledDBType != null &&

enabledDBType.equalsIgnoreCase("MYSQL"));
}

}

// Condition pour MongoDB

// Interface commune
public interface UserDAO {

List<String> getAllUserNames();
}

// Implémentation MySQL
public class JdbcUserDAO implements UserDAO {

@Override
public List<String> getAllUserNames() {

System.out.println("**** Getting usernames from RDBMS *****");
return Arrays.asList("Jim", "John", "Rob");

}
}

//Implémentation MongoDB
publicclass MongoUserDAO implements UserDAO {

@Override
public List<String> getAllUserNames() {

System.out.println("**** Getting usernames from MongoDB *****");
return Arrays.asList("Bond", "James", "Bond");

}

}

@Configuration
public class AppConfig {

@Bean
@Conditional(MySQLDatabaseTypeCondition.class)
public UserDAO jdbcUserDAO() {

return new JdbcUserDAO();
}

@Bean
@Conditional(MongoDBDatabaseTypeCondition.class)
public UserDAO mongoUserDAO() {

}

return new MongoUserDAO();

publicclassMongoDBDatabaseTypeCondition implements Condition {
@Override
publicbooleanmatches(ConditionContext conditionContext,

AnnotatedTypeMetadata metadata) {
StringenabledDBType = System.getProperty("dbType");
return(enabledDBType != null &&

enabledDBType.equalsIgnoreCase("MONGODB"));
}

}

}

33

 Vous pouvez maintenant configurer les beans JdbcUserDAO et MongoUserDAO de manière
conditionnelle en utilisant l’annotation @Conditional.

 Spring Boot propose de nombreuses annotations @Conditional personnalisées afin de répondre aux
besoins d’auto-configuration des développeurs selon différents critères.

Le Tableau 3-1 répertorie les annotations @Conditional fournies par Spring Boot par défaut.

 Si vous exécutez l’application avec la commande :java -jar myapp.jar -DdbType=MYSQL seul le bean
JdbcUserDAO sera enregistré.En revanche, si vous définissez la propriété système comme suit : -
DdbType=MONGODB.le bean MongoUserDAO sera enregistré.

AppConfig.javaListing 3-3.

Les Annotations intégrées de Spring Boot @Conditional

Annotation Description

@ConditionalOnBean

@ConditionalOnClass

@ConditionalOnMissingBean

@ConditionalOnMissingClass

@ConditionalOnProperty

@ConditionalOnResource

@ConditionalOnWebApplication

@Configuration
@EnableAutoConfiguration
@ComponentScan
public class Application {
}

S’applique lorsque les classes et/ou les noms
de beans spécifiés sont déjà enregistrés.

Il s'applique lorsque les classes et/ou les noms
encore de beans spécifiés ne sont pas

enregistrés.

S’applique lorsque les classes spécifiées sont
présentes dans le classpath.

S’applique lorsque les classes spécifiées ne
sont pas présentes dans le classpath.

S’applique lorsque les propriétés spécifiées ont
une valeur particulière.

S’applique lorsque les ressources spécifiées
sont présentes dans le classpath.

S’applique lorsque le contexte de l’application
est un contexte web.

34

 La clé de l’autoconfiguration de Spring Boot est l’annotation @EnableAutoConfiguration.
En général, on l’active en annotant la classe principale de l’application avec
@SpringBootApplication, ou bien, si l’on souhaite personnaliser certains comportements, avec les trois
annotations suivantes :

Tableau 3-1. Spring Boot @Conditional Annotations

 Maintenant que vous savez comment Spring Boot utilise l’annotation @Conditional pour décider
conditionnellement d’enregistrer ou non un bean, vous pourriez vous demander ce qui déclenche
exactement le mécanisme d’autoconfiguration.

Comment L’Autoconfiguration Fonctionne dans Spring Boot

35

 L’annotation @EnableAutoConfiguration permet à Spring d’activer le mécanisme
d’autoconfiguration en analysant le classpath et en enregistrant automatiquement les beans
correspondant à certaines conditions.
 Spring Boot fournit de nombreuses classes d’autoconfiguration dans le module spring-boot-
autoconfigure-{version}.jar. Chaque classe joue un rôle dans la création et la configuration
automatique de composants spécifiques.

 Les classes d’autoconfiguration sont généralement annotées avec @Configuration (elles représentent
des configurations Spring), annotées avec @EnableConfigurationProperties pour activer la liaison
automatique des propriétés de configuration et composées de méthodes qui enregistrent des beans,
souvent protégées par des annotations conditionnelles.Prenons l’exemple de la classe suivante dans
Listing 3-4

Listing3-4.org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration

@Configuration @ConditionalOnClass({ DataSource.class, EmbeddedDatabaseType.class
}) @EnableConfigurationProperties(DataSourceProperties.class) @Import({
Registrar.class, DataSourcePoolMetadataProvidersConfiguration.class }) public
class DataSourceAutoConfiguration {

...
@Bean
@ConditionalOnMissingBean
public DataSourceInitializer dataSourceInitializer(

DataSourceProperties properties,
ApplicationContext applicationContext) {

return new DataSourceInitializer(properties, applicationContext);
}
...
@Conditional(EmbeddedDatabaseCondition.class)
@ConditionalOnMissingBean({ DataSource.class, XADataSource.class })
@Import(EmbeddedDataSourceConfiguration.class)
protected static class EmbeddedDatabaseConfiguration { }
...
@Configuration
@Conditional(PooledDataSourceCondition.class)
@ConditionalOnMissingBean({ DataSource.class, XADataSource.class })
@Import({

DataSourceConfiguration.Tomcat.class,
DataSourceConfiguration.Hikari.class,
DataSourceConfiguration.Dbcp2.class,
DataSourceConfiguration.Generic.class

})
protected static class PooledDataSourceConfiguration { }
...

}

36

 La classe DataSourceAutoConfiguration contient également de nombreuses méthodes ou classes
internes annotées avec :

Ainsi, les propriétés suivantes seront automatiquement injectées dans l'objet

Chacune applique automatiquement la configuration nécessaire selon ce qui est détecté dans le projet.

 Ces conditions indiquent à Spring Boot quand un bean doit être créé ou non.
Par exemple : un bean ne sera enregistré que si aucun autre bean du même type n’existe déjà, ou

seulement si une propriété est définie.
Dans le module d’autoconfiguration, vous pouvez aussi retrouver :

 L’annotation @ConditionalOnClass({ DataSource.class, EmbeddedDatabaseType.class })indique que
l’autoconfiguration ne sera appliquée que si ces classes sont présentes sur le classpath.
 De plus, @EnableConfigurationProperties(DataSourceProperties.class) active la liaison automatique
des propriétés externes vers une classe Java :

@ConditionalOnMissingBean
@ConditionalOnClass
@ConditionalOnProperty

DispatcherServletAutoConfiguration
HibernateJpaAutoConfiguration
JpaRepositoriesAutoConfiguration
JacksonAutoConfiguration

DataSourceProperties:

spring.datasource.url=jdbc:mysql://localhost:3306/test
spring.datasource.username=root
spring.datasource.password=secret
spring.datasource.driver-class-name=com.mysql.jdbc.Driver

@ConfigurationProperties(prefix = DataSourceProperties.PREFIX)
public class DataSourceProperties {

public static final String PREFIX = "spring.datasource";
private String driverClassName;
private String url;
private String username;
private String password; // getters & setters

}

●
●
●

●
●
●
●

3.4 Les bases de Spring Boot
 Spring Bootfournit plusieurs fonctionnalités permettant d’implémenter des fonctionnalités couramment
utilisées, comme la journalisation (logging), l’externalisation des propriétés de configuration et Spring Boot
Dev Tools pour redémarrer automatiquement le serveur lors de modifications du code, ce qui permet
d’améliorer la productivité des développeurs.

37

 Le logging ou la journalisation est une partie très importante de toute application et il aide à déboguer les
problèmes. Par défaut, Spring Boot inclut spring-boot-starter-logging comme dépendance transitive pour
le module spring-boot-starter. Par défaut, Spring Boot utilise SLF4J avec les implémentations Logback.
Spring Boot possède une abstraction LoggingSystem qui configure automatiquement le logging en
fonction des fichiers de configuration disponibles dans le classpath.

 Si Logback est disponible, Spring Boot l’utilisera comme gestionnaire de logs. Vous pouvez facilement
configurer les niveaux de logging dans le fichier application.properties, sans avoir à créer des
fichiers spécifiques au fournisseur de logging comme logback.xml ou log4j.properties.

 Si vous souhaitez enregistrer les logs dans un fichier en plus de la console, vous pouvez spécifier le nom
du fichier comme suit : logging.path=/var/logs/app.log ou logging.file=myapp.log.

 Pour avoir un contrôle plus fin sur la configuration du logging, vous pouvez créer les fichiers spécifiques
au fournisseur de logging dans leurs emplacements par défaut, que Spring Boot utilisera
automatiquement.

 Si vous souhaitez utiliser d’autres bibliothèques de logging, comme Log4J ou Log4j2, au lieu de
Logback, vous pouvez exclure spring-boot-starter-logging et inclure le starter correspondant,
comme suit :

Logging

logging.level.org.springframework.web=INFO
logging.level.org.hibernate=ERROR
logging.level.com.mycompany=DEBUG

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
<exclusions>

<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-logging</artifactId>

</exclusion>
</exclusions>

</dependency>
<dependency>

 Note : vous pouvez également utiliser des fichiers YAML (.yml) comme alternative aux
fichiers .properties. Voir la section « Using YAML instead of properties » dans la
documentation officielle de Spring Boot : Spring Boot Reference

jdbc.driver=com.mysql.jdbc.Driver
jdbc.url=jdbc:mysql://localhost:3306/test
jdbc.username=root
jdbc.password=secret

public class DataSourceConfig {
private String driver;
private String url;
private String username;
private String password;

 <groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-log4j</artifactId>

</dependency>

Externalisation des Propriétés de Configuration
 En général, vous voudrez externaliser les paramètres de configuration dans des fichiers de propriétés ou
XML séparés, plutôt que de les intégrer directement dans le code, afin de pouvoir les modifier facilement
selon l’environnement de l’application. Spring fournit l’annotation @PropertySource pour spécifier la liste
des fichiers de configuration. Spring Boot va plus loin en enregistrant automatiquement un bean
PropertyPlaceholderConfigurer en utilisant le fichier application.properties situé par défaut à la racine du
classpath. Vous pouvez également créer des fichiers de configuration spécifiques à un profil en utilisant le
nom de fichier application-{profil}.properties. Par exemple, vous pouvez avoir application.properties pour
les valeurs par défaut, application-dev.properties pour le profil dev et application-prod.properties pour le
profil production. Si vous souhaitez configurer des propriétés communes à tous les profils, vous pouvez
les placer dans application-default.properties.

38

 Spring fournit l’annotation @Value pour lier une valeur de propriété à une propriété d’un bean. Cependant,
lier chaque propriété individuellement avec @Value peut être fastidieux. C’est pourquoi Spring Boot a
introduit un mécanisme permettant de lier automatiquement un ensemble de propriétés aux propriétés d’un
bean de manière type-safe.

Supposons que vous ayez le fichier application.properties suivant et une classe DataSourceConfig comme
suit :

http://docs.spring.io/spring-boot/%20docs/current/reference/htmlsingle/#boot-features-external-config-yaml.
http://docs.spring.io/spring-boot/%20docs/current/reference/htmlsingle/#boot-features-external-config-yaml.

}

// setters et getters

@Component
@ConfigurationProperties(prefix="jdbc")
public class DataSourceConfig {

...
}

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<optional>true</optional>

</dependency>

39

 Vous pouvez maintenant simplement annoter DataSourceConfig avec
@ConfigurationProperties(prefix="jdbc") pour lier automatiquement toutes les propriétés commençant
par jdbc.*.

 Spring Boot developer tools déclenchent ainsi automatiquement le redémarrage de l’application à
chaque modification du contenu du classpath.

Lorsque vous modifiez des classes ou des fichiers de configuration situés dans le classpath, Spring Boot
redémarre automatiquement le serveur. En revanche, les ressources statiques comme les fichiers CSS, JS

Vous pouvez ensuite injecter le bean DataSourceConfig dans d’autres beans Spring et accéder aux

propriétés via les getters.

 Les noms des propriétés du bean n’ont pas besoin d’être exactement identiques aux clés des propriétés.
Spring Boot prend en charge le relaxed binding, ce qui signifie que la propriété du bean driverClassName
peut être mappée à n’importe laquelle des clés suivantes : driverClassName, driver-class-name, ou
DRIVER_CLASS_NAME.

 Pendant le développement, il est souvent nécessaire de modifier le code et de redémarrer le serveur pour
que ces changements soient pris en compte. Spring Boot facilite ce processus grâce au module spring-boot-
devtools, qui offre notamment un redémarrage rapide de l’application dès qu’une modification du classpath
est détectée. Lorsque ce module est inclus, la mise en cache des templates de vues (Thymeleaf, Velocity,
Freemarker, etc.) est automatiquement désactivée, permettant de visualiser immédiatement les changements
effectués. Les propriétés configurées par défaut peuvent être consultées dans la classe
org.springframework.boot.devtools.env.DevToolsPropertyDefaultsPostProcessor.
L’intégration du module se fait simplement via la dépendance suivante :

Developer Tools

:

40

 Vous pouvez remplacer cette liste d’exclusions via: spring.devtools.restart.exclude=assets/**,resources/**

 Ou ajouter des exclusions ou chemins supplémentaires : spring.devtools.restart.additional-
exclude=assets/**,setup-instructions/**
spring.devtools.restart.additional-paths=D:/global-overrides/

 Lorsque vous devez effectuer plusieurs modifications avant de tester une fonctionnalité, le redémarrage
automatique à chaque changement peut devenir gênant. Il est alors possible d’utiliser un fichier déclencheur
grâce à spring.devtools.restart.trigger-file=restart.txt.

 Le mécanisme de redémarrage s’appuie sur deux classloaders : un classloader de base pour les classes qui
ne changent pas (issues des dépendances externes), et un classloader de redémarrage pour les classes de
votre application. Lors d’un redémarrage, seul ce dernier est recréé, ce qui accélère significativement le
processus. Vous pouvez désactiver le redémarrage automatique avec :spring.devtools.restart.enabled=false.
Ou le désactiver complètement en le passant comme propriété système java -jar -
Dspring.devtools.restart.enabled=false app.jar

 Enfin, pour utiliser les mêmes réglages devtools sur plusieurs projets, il est possible de créer un fichier
global sprint-boot-devtools.properties dans le répertoire utilisateur (C:\Users\<username>\ sous Windows ou
/home/<username>/ sous Linux/MacOS).

ou HTML ne déclenchent pas de redémarrage. C’est pourquoi elles sont exclues par défaut dans la
propriété suivante définie dans DevToolsProperties :

@ConfigurationProperties(prefix = "spring.devtools")
public class DevToolsProperties {

...
public static class Restart {

private static final String DEFAULT_RESTART_EXCLUDES =
"META-INF/maven/**,"
+ "META-INF/resources/**,resources/**,"
+ "static/**,public/**,templates/**,"

+ "**/*Test.class,**/*Tests.class,git.properties,
META-INF/build-info.properties ";

private String exclude = DEFAULT_RESTART_EXCLUDES;
...

}

}

Chapitre 4. Développement d'Applications
Web avec Spring MVC
 Dans ce chapitre, nous allons explorer la manière dont Spring Boot implémente le modèle architectural
Modèle-Vue-Contrôleur (MVC) à travers son module Spring Web MVC, dédié au développement
d’applications Web et d’APIs Web. Il couvre les concepts fondamentaux de la gestion des requêtes et des
réponses, ainsi que les mécanismes de validation de données.

41

 Le module Spring Web MVC est l'outil de Spring pour la construction de l'interface utilisateur et de
l'interface d'API. Bien que le nom réfère au modèle MVC classique, son application est adaptée pour les
APIs Web, où la Vue est remplacée par la sérialisation de données.

 Le modèle MVC (Modèle Vue Contrôleur) est un patron d'architecture pour guider la conception
d’applications nécessitant une interaction de l’utilisateur avec le système. Il définit trois grandes catégories
de responsabilité :

● Modèle (Model) : Les classes appartenant à cette catégorie définissent les données applicatives
(objets Java) échangées entre l’utilisateur et le système ou les données à afficher.
Vue (View) : Les classes appartenant à cette catégorie gèrent la représentation graphique des
données et l’interface utilisateur. Spring Web MVC permet l’utilisation de différentes
technologies de vues comme Thymeleaf (le moteur recommandé) ou JSP.
Contrôleur (Controller) : Les classes appartenant à cette catégorie gèrent les interactions de
l'utilisateur (requêtes HTTP), valident les paramètres et assurent la cohérence entre le modèle et
la vue après traitement par la couche de service.

●

●

4.1 Architecture MVC et Contexte Spring Web

Figure 4-1. Structure d'une Application Web JEE/Spring Boot

 Le Modèle MVC : Principes et Responsabilités

 Mapping des Requêtes
 Les annotations de mapping sont utilisées pour associer une méthode de contrôleur à une URL et à une
méthode HTTP spécifiques :

 @RestController vs @Controller

 Intégration de Spring Web MVC et Rôle du Serveur

42

 Les contrôleurs sont des composants centraux qui gèrent les interactions entre le client et la logique
métier. Spring utilise des annotations spécifiques pour définir et configurer ces classes.

 Spring Web MVC nécessite un conteneur Web léger pour traiter les requêtes HTTP, car le Spring
Framework lui-même ne fournit pas de serveur.

● Approche Spring Boot : Grâce à Spring Boot, l'application embarque son propre conteneur Web
(comme Tomcat ou Jetty). Cela simplifie l'intégration et le déploiement par rapport aux serveurs
d'applications Java EE complets.
● Le Contrôleur dans le Flux : Dans la logique MVC, l'utilisateur interagit avec le Contrôleur (via
une requête HTTP). Ce contrôleur est chargé de valider les paramètres de la requête, de les
transmettre à la couche de service pour traitement, puis d'alimenter le modèle pour le transmettre
à la vue.

 est l'annotation standard utilisée pour les contrôleurs dans les applications
traditionnelles basées sur les vues
➔ Le but est de générer et de retourner le nom logique d'une Vue (par exemple, un fichier

HTML via Thymeleaf ou JSP) pour l'affichage par le navigateur.
@RestController est l'annotation privilégiée pour la création d'APIs RESTful.
➔ C'est une annotation qui combine les fonctionnalités de @Controller et de @ResponseBody,
cette combinaison permet d'indiquer à Spring que la valeur de retour de la méthode ne doit pas être
interprétée comme le nom d'une vue, mais doit être sérialisée directement dans le corps de la
réponse HTTP ,généralement au format JSON.

●

●

@Controller

4.2 Controllers

Annotation

@GetMapping

@PostMapping

@PutMapping

@DeleteMapping

Figure 4- 2.

Méthode HTTP Rôle

GET

POST

PUT

DELETE

Récupération de données.

Création de nouvelles ressources.

Modification complète d'une ressource.

Suppression d'une ressource.

Tableau sur les variantes de @RequestMapping

●

@PathVariable :
@RequestParam :

➢ Exemple de @PathVariable (Extraction de l'ID)

Exemple de Contrôleur (Utilisation pour les APIs RESTful)

//L'ID du produit est extrait de l'URL /{id}
@GetMapping("/{id}")
public Produit getProductById(@PathVariable Long id) {

// l'appel au service pour trouver le produit par ID
return service.findById(id);

}

@RestController
@RequestMapping("/api/produits") // Mappe toutes les requêtes de base
publicclass ProduitController {

//@GetMapping gère la requête GET /api/produits
@GetMapping
public List<Produit> getAllProducts() {

// l'appel au service pour récupérer tous les produits
return service.findAll();

}
//@PostMapping gère la requête POST /api/produits
@PostMapping
public Produit createProduct(@RequestBody Produit nouveauProduit) {

// l'appel au service pour sauvegarder le nouveau produit
return service.save(nouveauProduit);

}

}

Code 4-1.

Code 4-2.

Exemple de contrôleur

Exemple utilisation de PathVariable

Principes REST
 Une API RESTful modélise les données sous forme de ressources accessibles via des URI. Les
interactions sont sans état (stateless), et l'interface est uniforme, s'appuyant sur les méthodes HTTP
standard.

Gestion des Paramètres et du Path

43

Spring permet de lier des parties de la requête HTTP aux arguments des méthodes du contrôleur :

●
●

permet d’extrairedesvaleurs dynamiques directement d'une partie de l'URL.
permet d’extrairedesparamètresderequête qui suivent le point

d'interrogationdansl'URL (parexemple,/produits?page=1).

 Le développement d'API suit les principes de l'architecture REST (Representational State Transfer) pour
une communication standardisée et stateless.

4.3 Création d'APIs RESTful

 HTTP Methods et Codes de Statut
 Les Codes de Statut HTTP sont fondamentaux pour le développement d'APIs RESTful, car ils
normalisent la communication du résultat d'une requête au client.

Annotations de Gestion des Données

ResponseEntity et Personnalisation des Réponses
 La classe ResponseEntity permet d'envelopper l'objet de réponse pour contrôler explicitement les
en-têtes HTTP et le code de statut, assurant une communication REST conforme.

44

 Pour construire une API professionnelle, il faut contrôler précisément le contenu et les métadonnées
(statut) des réponses.

Ces codes sont divisés en classes principales :

❖ 2xx (Succès) : Indiquent que la requête a été traitée avec succès (ex: 200 OK, 201 Created).
❖ 4xx (Erreur Client) : Signalent une erreur de la part du client (ex: 400 Bad Request pour une

validation échouée, 404 Not Found).
❖ 5xx (Erreur Serveur) : Indiquent une défaillance du serveur (ex: 500 Internal Server Error).

Pour définir et retourner explicitement ces statuts et assurer la conformité du protocole REST, on utilise
la classeResponseEntity dansSpring.

@RequestBody : Mappe le corps de la requête HTTP (généralement JSON/XML) vers un objet
Java.
@ResponseBody : Indique que la valeur de retour doit être sérialisée dans le corps de la réponse.
(Implicitement inclus avec @RestController).

Figure 4-3.Codes de statut HTTP

●

●

4.4 Gestion des Réponses

➢ Exemple d'utilisation de ResponseEntity

Exemple de Bean (DTO) avec Annotations de Validation

}

public class ProduitDTO {

@NotNull(message = "Le nom ne peut pas être nul.")
@Size(min = 3, max = 50, message = "Le nom doit contenir entre 3 et 50

caractères.")
private String nom;

@GetMapping("/secure/{id}")
publicResponseEntity<Produit> getSecuredProduct(@PathVariable Long id) {

Produitp=service.findById(id);
if(p==null) {

//Retourne un statut 404 Not Found si la ressource est introuvable
returnnew ResponseEntity<>(HttpStatus.NOT_FOUND);

}
//Retournela ressource avec un statut 200 OK : la requête a réussi
returnnewResponseEntity<>(p, HttpStatus.OK);

Code 4-3. Exemple utilisation de ResponseEntity

Annotations de Validation
Les contraintes sont définies à l'aide d'annotations :

 Bean Validation (JSR-380)
 Spring utilise les spécifications de Bean Validation (JSR-380), permettant de définir des contraintes
déclaratives directement sur les champs des objets Java.

Content Negotiation (JSON, XML)
 Boot gère la négociation de contenu, qui détermine le format de la réponse (JSON, XML, etc.) en fonction
des en-têtes de la requête client (notamment l'en-tête Accept). La sérialisation en JSON via la librairie
Jackson est Spring le comportement par défaut pour les APIs REST.

45

● @NotNull / @NotEmpty / @NotBlank : Vérifie l'absence de valeur nulle, de chaîne vide,..
● @Size(min=x, max=y) : Limite la taille d'une chaîne ou d'une collection.
● @Min(value=x) / @Max(value=x) : Limite la valeur numérique.
● @Email : Valide le format de l'adresse e-mail.
➢

 La validation des données est nécessaire pour garantir l'intégrité des informations avant leur traitement
ou leur persistance.

4.5 Validation des Données

}

@Min(value = 10, message = "Le prix doit être au moins de 10.")
private double prix;

}

@PostMapping("/validate")
//@Valid déclenche la vérification des contraintes définies dans ProduitDTO
public ResponseEntity<Produit> createValidProduct(@Valid @RequestBody

ProduitDTO produitDTO) {
// Le code n'est exécuté que si la validation est réussie
// l'appel au service de création
return new ResponseEntity<>(produitDTO.toProduit(), HttpStatus.CREATED);

Code 4-4.

Code 4-5. Exemple d'utilisation de @Valid

Exemple de Bean avec Annotations de Validation

Gestion des Erreurs de Validation
 L'annotation @Valid ou @Validated placée devant le DTO dans le contrôleur déclenche le processus de
validation. En cas d'échec, Spring lève une exception.

46

● Implémentation : Il est recommandé d'utiliser une classe annotée avec @ControllerAdvice pour
intercepter l'exception (MethodArgumentNotValidException) et formater une réponse 400 Bad
Request contenant une liste détaillée deserreurs pour le client.

➢ Exemple d'utilisation de @Valid

Chapitre 5. Persistance des Données avec
Spring Data JPA
5.1 C’est quoi Spring Data ?

 Dans l'écosystème Spring, la gestion de la persistance des données est grandement simplifiée par le
projet Spring Data. Il s'agit d'un framework de haut niveau dont l'objectif principal est d'unifier et de
faciliter l'accès à diverses sources de données, qu'il s'agisse de bases de données relationnelles, NoSQL,
ou de systèmes de recherche. Sa philosophie est de réduire au maximum le code répétitif (boilerplate)
traditionnellement nécessaire pour écrire la couche d'accès aux données, permettant ainsi aux
développeurs de se concentrer sur la logique métier.

47

 Spring Data adopte une approche modulaire selon la technologie de persistance utilisée. Ainsi, nous
trouvons des modules spécialisés tels que Spring Data JDBC pour les accès directs via JDBC, Spring
Data MongoDB pour les bases NoSQL document, Spring Data Redis pour les bases clé-valeur, Spring
Data Elasticsearch pour les moteurs de recherche, ou encore Spring Data Neo4j pour les bases de
données orientées graphes. Chaque module respecte un ensemble de contrats communs, offrant une
expérience de développement cohérente quelle que soit la technologie sous-jacente.

 Pour interagir avec les bases de données relationnelles, qui sont au cœur de nombreuses applications,
Spring Data propose le module Spring Data JPA. Ce module s'appuie sur la norme établie dans le monde
Java pour la persistance : la JPA (Java Persistence API). JPA est une spécification qui définit un cadre
pour le mapping objet-relationnel (ORM), c'est-à-dire la technique qui permet de faire correspondre les
objets de notre application aux tables d'une base de données. Des outils comme Hibernate sont des
implémentations concrètes de cette spécification.

5-1 Illustration. Modules de Spring Data

48

requêtes

 La véritable puissance de Spring Data JPA réside dans son abstraction des Repositories (référentiels).
Plutôt que d'écrire manuellement des classes d'accès aux données (DAO), le développeur se contente de
définir une interface. À partir de cette simple interface, Spring Data est capable de générer dynamiquement
une implémentation complète fournissant les opérations de base (CRUD - Create, Read, Update, Delete)
ainsi que des requêtes plus complexes dérivées simplement du nom des méthodes. Cette approche
déclarative sera au centre de notre étude dans ce chapitre

 Le mapping objet-relationnel (ORM) résout l'une des problématiques fondamentales du développement
d'applications : le décalage d'impédance entre le modèle objet utilisé dans les langages de programmation et
le modèle relationnel des bases de données. Cette technique permet de manipuler les données sous forme
d'objets Java tout en bénéficiant de la robustesse et des performances des bases de données relationnelles.
Les principaux avantages de l'ORM incluent :

❖ Abstraction de la base de données : Le développeur travaille avec des objets Java plutôt qu'avec
du SQL brut

❖ Portabilité : Le même code peut fonctionner avec différents SGBD (MySQL, PostgreSQL,
Oracle, etc.)

❖ Productivité accrue : Réduction significative du code de persistance manuel
❖ Gestion automatique des relations : Mapping transparent des associations entre entités
❖ Optimisations intégrées : Lazy loading, cache de premier et second niveau, regroupement de

 JPA (Java Persistence API) est une spécification Java EE qui standardise les concepts ORM. Elle définit un
ensemble d'annotations (@Entity, @Table, @Column), d'APIs (EntityManager, Query) et de comportements
que toute implémentation doit respecter. JPA ne fournit pas de code exécutable, mais plutôt un contrat que
les fournisseurs d'ORM doivent implémenter.

 Hibernate est l'implémentation de référence de JPA, développée par Red Hat. Il s'agit d'un framework
ORM mature qui existait bien avant la spécification JPA et qui a largement inspiré cette dernière.
Hibernate fournit :

❖ Une implémentation complète et performante de JPA
❖ Des fonctionnalités étendues au-delà de la spécification (Criteria API native, types

personnalisés, etc.)
❖ Un moteur de requêtes HQL (Hibernate Query Language) particulièrement puissant
❖ Des mécanismes avancés de cache et d'optimisation

 Dans Spring Boot, Hibernate est automatiquement configuré comme implémentation JPA par défaut via
le starter spring-boot-starter-data-jpa. Cette configuration transparente permet aux développeurs de

5.2 Introduction à JPA et Hibernate
ORM : conceptsetavantages

JPA comme spécification, Hibernate comme implémentation

49

bénéficier immédiatement de toute la puissance d'Hibernate
garantissant ainsi la portabilité de leur code.

tout en respectant les standards JPA,

 L'une des forces de Spring Boot réside dans sa capacité à simplifier drastiquement la configuration de la
persistance. Grâce à son principe d'auto-configuration, Spring Boot peut détecter automatiquement les
dépendances présentes dans le classpath et configurer la base de données en conséquence, pour travailler
avec spring data jpa il faut ajouter la dépendance suivante:

 Par défaut, Spring Boot configure automatiquement une base de données H2 en mémoire si la dépendance
est présente et qu'aucune autre source de données n'est configurée. Vous pouvez personnaliser ce
comportement dans le fichier src/main/resources/application.properties :

 La base de données H2 est un système de gestion de bases de données relationnelles (SGBDR) open
source, léger, entièrement écrit en Java. Elle est principalement utilisée en mode "embarqué" (intégrée
directement dans l'application) ou "en mémoire" in-memory pour offrir des performances très rapides.
Grâce à son faible encombrement et sa conformité à l'API JDBC standard, H2 est particulièrement
appréciée pour les phases de développement, le prototypage rapide et, surtout, les tests automatisés dans
les applications Java, notamment celles basées sur le framework Spring Boot. Elle propose également
une console web intégrée accessible via /h2-console, permettant d'exécuter des requêtes SQL directement
depuis le navigateur.. Pour l'utiliser, il suffit d'ajouter la dépendance :

Configuration de la base de données

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<scope>runtime</scope>

</dependency>

H2 In-Memory Configuration
spring.datasource.url=jdbc:h2:mem:testdb
spring.datasource.driver-class-name=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=

Activation de la console web H2

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

➢ Base de données H2

Configuration H2 dans application.properties :

spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

<dependency>
<groupId>com.mysql</groupId>
<artifactId>mysql-connector-j</artifactId>
<scope>runtime</scope>

</dependency>

Configuration JPA/Hibernate
spring.jpa.database-platform=org.hibernate.dialect.H2Dialect
spring.jpa.hibernate.ddl-auto=create-drop
spring.jpa.show-sql=true

Configuration de la source de données MySQL
spring.datasource.url=jdbc:mysql://localhost:3306/votre_nom_de_base_de_donnees
spring.datasource.username=votre_utilisateur
spring.datasource.password=votre_mot_de_passe

Spécifie explicitement la classe du pilote MySQL
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

Configuration JPA/Hibernate (facultatif mais recommandé)
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true

spring.datasource.driver-class-name
spring.datasource.url
données.

50

lisibilité :

MySQL est l'un des SGBD relationnels les plus populaires en entreprise. Pour l'intégrer à Spring Boot :

spécifie le pilote Java correct, tandis que
définitl'adresseetle mode de fonctionnement (en mémoire) de la base de

 Pour gérer la création et les mises à jour du schéma de base de données par Hibernate pendant le
développement, vous pouvez configurer spring.jpa.hibernate.ddl-auto contrôle la manière dont le schéma de
la base de données est automatiquement généré ou mis à jour au démarrage de l'application, Pour les bases
de données embarquées (comme H2, HSQLDB, ou Derby), la valeur par défaut est create-drop. L'affichage
des requêtes SQL est activé avec spring.jpa.show-sql=true et spring.jpa.properties.hibernate.format_sql
formate les requêtes SQL pour une meilleure

Configuration JPA/Hibernate (optionnel)

➢ Base de données MySQL

Configuration MySQL dans application.properties :

http://com.mysql.cj/
http://com.mysql.cj/

<dependency>
<groupId>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
<scope>runtime</scope>

</dependency>

spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQLDialect

Configuration de la source de données PostgreSQL
spring.datasource.url=jdbc:postgresql://localhost:5432/votre_nom de base_de_donnees
spring.datasource.username=votre_utilisateur
spring.datasource.password=votre_mot_de_passe

Spécifie explicitement la classe du pilote (souvent facultatif avec Spring Boot)
spring.datasource.driver-class-name=org.postgresql.Driver

Configuration JPA/Hibernate (facultatif mais recommandé)
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect

❖

❖

❖

❖

❖

51

Remplacez les propriétés MySQL ou H2 par

application.properties :

 La configuration de PostgreSQL suit le même principe que MySQL. Son intégration nécessite l’ajout du
connecteur JDBC pour PostgreSQL dans pom.xml :

spring.datasource.url : L'URL inclut l'hôte (localhost si c'est sur votre machine), le port par défaut
de MySQL (3306), et le nom de la base de données (votre_nom_de_base_de_donnees) que vous
devez avoir préalablement créée.
spring.datasource.username et spring.datasource.password : Les
identifiants de
connexion à votre base de données. spring.datasource.driver-class-name : Le nom de la classe du
pilote MySQL moderne.
spring.jpa.hibernate.ddl-auto : Pour MySQL, la valeur par défaut de Spring Boot est
none en production.

celles de PostgreSQL dans src/main/resources/

 spring.datasource.url : Utilise le format jdbc:postgresql://[hôte]:[port]/[base_de_données].
Le port par défaut est 5432.

➢ Base de données PostegreSQL

ConfigurationPostgreSQLdansapplication.properties :

❖

❖

52

 Une entité est une simple classe Java (POJO - Plain Old Java Object) dont les instances correspondent à
des lignes dans une table de base de données. Le mapping entre la classe et la table est réalisé à l'aide
d'annotations.

spring.datasource.driver-class-name : La classe du pilote standard pour PostgreSQL est
org.postgresql.Driver.
spring.jpa.properties.hibernate.dialect : Bien que Spring Boot puisse
souvent le
déduire automatiquement, spécifier le dialecte org.hibernate.dialect.PostgreSQLDialect permet à
Hibernate de générer le SQL le plus optimisé pour PostgreSQL.

 Les annotations de base permettent de déclarer une classe comme une entité et de personnaliser son
mapping avec la structure de la base de données.

❖ @Entity : C'est l'annotation fondamentale qui marque une classe comme étant une entité JPA.
Elle signale au provider de persistance (Hibernate) que cette classe doit être gérée et que ses
objets peuvent être stockés en base de données.
❖ @Id: Cette annotation est placée sur le champ qui sert de clé primaire.
❖ @GeneratedValue : Combinée avec @Id, cette annotation spécifie la stratégie de génération de

la clé primaire. Les stratégies les plus courantes (GenerationType) sont :
■ IDENTITY : S'appuie sur une colonne auto-incrémentée de la base de données .
■
■

SEQUENCE : Utilise une séquence de base de données pour générer la valeur .
AUTO : (Défaut) Laisse le provider de persistance (Hibernate) choisir la stratégie
la plus appropriée en fonction du dialecte de la base de données.

Mapping objet-relationnel (@Entity, @Table, @Column)

Entités JPA

Exemple de classe marquée comme une entité JPA

import javax.persistence.Entity; import
javax.persistence.GeneratedValue; import
javax.persistence.GenerationType; import
javax.persistence.Id;

@Entity public class Employee {

@Id @GeneratedValue(strategy =
GenerationType.AUTO) private long id; private
String name; private String city;

public Employee() {
}

}

 public Employee(String name, String city) {
this.name = name;
this.city = city;

}
//getters et setters
}

@Column(name = "nom_produit", nullable = false, length = 100)
private String nom;

@Column(length = 500)
private String description;

private double prix;

// Constructeurs, Getters et Setters...

import javax.persistence.*;

@Entity // Marque cette classe comme une entité JPA
@Table(name = "produits") // Mappe cette entité à la table "produits"
public class Produit {

53

 L'un des plus grands atouts de JPA est sa capacité à modéliser les relations entre les tables directement
dans le code objet.

Comme aucune annotation @Table n’existe, il suppose que cette entité est mappée à une table nommée
.

❖ @Table : Optionnelle, cette annotation permet de spécifier les détails de la table à laquelle l'entité
est mappée. Par défaut, le nom de la table est le nom de la classe. On l'utilise principalement pour
définir un nom de table différent (name), un schéma (schema), ou des contraintes d'unicité.
❖ @Column : Appliquée sur un champ de l'entité, cette annotation permet de personnaliser le
mapping avec la colonne correspondante. On peut spécifier son nom (name), sa longueur (length),
si elle peut être nulle (nullable), ou si sa valeur doit être unique (unique).

Relations entre entités

Employee

Exemple avec @Table et @Column

@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private long id;

54

 Spring Data s’organise autour de la notion de repository. Il fournit une interface marqueur générique
Repository<T, ID>. Le type T correspond au type de l’objet géré par le repository. Le type ID
correspond au type de la clé d’un objet.

 @ManyToOne (Plusieurs-à-Un) : C'est la relation la plus commune. Par exemple, plusieurs produits
(many) appartiennent à une seule catégorie (one). C'est généralement le côté "propriétaire" de la relation,
celui qui porte la colonne de clé étrangère.

@OneToMany (Un-à-Plusieurs) : C'est le côté inverse de la relation @ManyToOne. Une catégorie
(one) peut avoir une collection de produits (many). On utilise l'attribut mappedBy pour indiquer que la
relation est gérée par l'autre entité, évitant ainsi la redondance.

@ManyToMany (Plusieurs-à-Plusieurs) : Modélise une relation où une instance d'une entité peut être
associée à plusieurs instances d'une autre, et vice-versa (par exemple, des produits et des commandes).
JPA gère cette relation en utilisant une table de jonction.

Exemple de relation OneToMany / ManyToOne : une catégorie et plusieurs produits

// Dans la classe Produit.java @Entity @Table(name = "produits") public class
Produit { //clé primaire @ManyToOne(fetch = FetchType.LAZY) // Plusieurs
produits pour une catégorie @JoinColumn(name = "categorie_id") // Nom de la
colonne de la clé étrangère private Categorie categorie;

// Colonnes, Constructeurs, Getters et Setters...
}
// Dans une nouvelle classe Categorie.java
@Entity
@Table(name = "categories")
public class Categorie {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String nom;

// mappedBy="categorie" fait référence au champ "categorie" dans l'entité Produit
@OneToMany(mappedBy = "categorie", cascade = CascadeType.ALL, orphanRemoval =

true)
private List<Produit> produits = new ArrayList<>();

// Constructeurs, Getters et Setters...
}

 Repositories Spring Data

https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html

55

 En héritant de JpaRepository (qui hérite elle-même CrudRepository), ProduitRepository dispose
instantanément d'un ensemble complet de méthodes pour les opérations CRUD de base, sans écrire une seule
ligne d'implémentation :

❖ save(Produit produit) : Sauvegarde un nouveau produit ou met à jour un produit existant.
❖ findById(Long id) : Récupère un produit par sa clé primaire. Renvoie un Optional<Produit>.
❖ findAll() : Renvoie la liste de tous les produits.
❖ deleteById(Long id) : Supprime un produit par sa clé primaire.
❖ count() : Compte le nombre total de produits.
❖ existsById(Long id) : Vérifie si un produit avec cet ID existe.

 L’interface CrudRepository<T, ID> hérite de Repository<T, ID> et fournit un ensemble d’opérations
élémentaires pour la manipulation des objets.

 Spring Data JPA fournit l’interface JpaRepository<T, ID> qui hérite de CrudRepository<T, ID> et qui
fournit un ensemble de méthodes plus spécifiquement adaptées pour interagir avec une base de données
relationnelle.

Pour définir un , il suffit de créer une interface qui hérite d’une des interfaces ci-dessus.

 L’interface JpaRepository<T, ID> déclare beaucoup de méthodes mais elles suffisent rarement pour
implémenter les fonctionnalités attendues d’une application. Spring Data JPA utilise une convention de
nommage pour générer automatiquement le code sous-jacent et exécuter la requête. La requête est déduite de
la signature de la méthode (on parle de query methods).

 La convention est la suivante : Spring Data JPA supprime du début de la méthode les préfixes find,
findAll, read, query, count et get et recherche la présence du mot By pour marquer le début des critères de
filtre. Le terme après By fait référence à un attribut de l’entité JPA pour lequel on veut appliquer un filtre.
Chaque critère doit correspondre à un paramètre de la méthode en respectant l’ordre.

 En déclarant simplement cette interface, Spring Boot va automatiquement détecter ProduitRepository,
comprendre qu'il doit la gérer, et créer à l'exécution un bean qui implémente toutes les méthodes de
JpaRepository.

repository

Exemple de Repository pour l’entité Produit

import org.springframework.data.jpa.repository.JpaRepository;
@Repository //Annotation (optionnelle mais recommandée) qui identifie ce bean comme
un repository
public interface ProduitRepository extends JpaRepository<Product, Long> {
}

Méthodes CRUD automatiques

Ajout de méthodes dans une interface de repository

https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html
https://docs.spring.io/spring-data/jpa/docs/current/reference/html
https://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/JpaRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html
https://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/JpaRepository.html
https://docs.spring.io/spring-data/jpa/docs/current/reference/html
https://docs.spring.io/spring-data/jpa/docs/current/reference/html

Exemple avec JPQL et des paramètres nommés :

Exemple de méthodes à ajouter dans ProduitRepository

 repository.

public interface ProduitRepository extends JpaRepository<Produit, Long> {

// SELECT p FROM Produit p WHERE p.nom = ?1
Optional<Produit> findByNom(String nom);

// SELECT p FROM Produit p WHERE p.prix < ?1
List<Produit> findByPrixLessThan(double prixMax);

// SELECT p FROM Produit p WHERE p.nom LIKE %?1%
List<Produit> findByNomContainingIgnoreCase(String keyword);

// SELECT p FROM Produit p WHERE p.categorie.nom = ?1
List<Produit> findByCategorieNom(String nomCategorie);

}

import org.springframework.data.repository.query.Param;

public interface ProduitRepository extends JpaRepository<Produit, Long> {
@Query("SELECT p FROM Produit p WHERE p.categorie.id = :catId AND p.prix>

:prixMin")
List<Produit> findProduitsChersDansCategorie(

@Param("catId") Long categorieId,
@Param("prixMin") double prixMinimum

);}

@Query(
value = "SELECT * FROM produits p JOIN categories c ON p.categorie_id = c.id

56

Spring Data JPA générera une implémentation pour chaque méthode de ce

 Lorsque les conventions de nommage ne suffisent pas pour des requêtes plus complexes (impliquant des
jointures spécifiques, des agrégations ou des sous-requêtes), Spring Data permet d'écrire des requêtes
personnalisées à l'aide de l'annotation @Query.

On peut écrire la requête en JPQL (Java Persistence Query Language), qui est similaire au SQL mais
opère sur les entités et leurs propriétés.

 Il est également possible d'exécuter des requêtes SQL natives en ajoutant l'attribut nativeQuery = true.
C'est utile pour exploiter des fonctionnalités spécifiques à une base de données.

Requêtes personnalisées

https://docs.spring.io/spring-data/jpa/docs/current/reference/html

WHERE c.nom = ?1",
nativeQuery = true)

List<Produit> findByCategorieNomNative(String nomCategorie);

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

@SpringBootApplication
@EnableJpaRepositories(enableDefaultTransactions = false) // Désactivation des
transactions par défaut
public class MyApplication {

public static void main(String[] args) {
SpringApplication.run(MyApplication.class, args);

}
}

57

 Grâce aux repositories, la couche d'accès aux données devient à la fois simple, puissante et extrêmement
productive.

 La notion de transaction est fondamentale dans les systèmes d’information. Une transaction respecte
quatre propriétés désignées par l’acronyme ACID (Atomicité, Cohérence, Isolation, Durabilité). Elle est
définie par un début et une fin : soit une validation des modifications (commit), soit une annulation
(rollback).

 On parle de démarcation transactionnelle pour désigner la portion de code qui doit s’exécuter comme un
bloc unique. Dans une architecture multi-couches, la couche de service (ou couche métier) est l'endroit idéal
pour cette démarcation. En effet, une méthode de service représente souvent une fonctionnalité complète qui
peut nécessiter plusieurs opérations sur la base de données. Ces opérations doivent réussir ou échouer en
bloc.

 Par défaut, Spring Data JPA active les transactions sur chaque méthode des repositories. Cela signifie
qu'un appel à repository.save() est une transaction à lui seul. Cette configuration peut entraîner des
incohérences : si une méthode de service appelle deux méthodes save() et qu'une erreur survient après le
premier appel, ce dernier ne sera pas annulé.

Pour des applications robustes, il est donc recommandé de désactiver ce comportement et de gérer les
transactions exclusivement au niveau de la couche de service.

 Une fois cette option désactivée, tout appel à une méthode de repository modifiant des données devra
obligatoirement être exécuté depuis un contexte transactionnel (comme une méthode de service annotée),
sous peine d'échouer.

La démarcation transactionnelle dans la couche Service

Gestion transactionnelle avec @Transactional

58

 L'annotation @TransactionaldeSpring, placée sur une méthode de service, demande à Spring
d'envelopper son exécution dansunetransaction :

❖ Si la méthode se terminesanserreur, Spring valide la transaction (commit).
❖ Si une RuntimeExceptionestlevée, Spring annule la transaction (rollback).

 Avec @Transactional, l'opération de mise à jour du prix est atomique : soit elle réussit complètement,
soit elle est entièrement annulée, garantissant ainsi l'intégrité des données.

Exemple dans une couche Service:

import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import javax.persistence.EntityNotFoundException;

@Service
public class ProduitService {

private final ProduitRepository produitRepository;
public ProduitService(ProduitRepository produitRepository) {
this.produitRepository = produitRepository;
}

@Transactional
public void updateProduitPrice(Long produitId, double nouveauPrix) {
Produit produit = produitRepository.findById(produitId)

.orElseThrow(() -> new EntityNotFoundException("Produit non trouvé
avec l'id : " + produitId));

if (nouveauPrix <= 0) {
 thrownewIllegalArgumentException("Leprixdoitêtrestrictementpositif.");

}

produit.setPrix(nouveauPrix);

// Pas besoin d'appeler produitRepository.save(produit).
// Dans une transaction, Hibernate surveille les changements sur les entités (dirty

checking)
// et propage automatiquement la mise à jour en base de données au moment du commit.
}

}

Propagation et Isolation
L'annotation @Transactional peut être affinée avec des attributs :

59

Définit le comportement si une méthode transactionnelle en appelle une autre.

❖ REQUIRED (défaut) : La méthode rejoint la transaction existante ou en crée une nouvelle.
❖ REQUIRES_NEW : Crée toujours une nouvelle transaction indépendante.
❖ Autres : SUPPORTS, NOT_SUPPORTED, MANDATORY, NEVER

 Ce chapitre a démontré l'efficacité de l'écosystème Spring pour la persistance des données. En nous
appuyant sur la norme JPA et son implémentation Hibernate, nous avons mis en place une couche de
mapping objet-relationnel robuste, dont la configuration est grandement simplifiée par Spring Boot.

 L'atout majeur réside dans Spring Data JPA et son concept de Repositories. Grâce à de simples
interfaces, nous avons obtenu une couche d'accès aux données complète, incluant les opérations CRUD et
des requêtes personnalisées, réduisant ainsi drastiquement le code à écrire.

Finalement, l'utilisation de @Transactional au niveau de la couche de service a permis de garantir
l'intégrité et la cohérence des données via une gestion transactionnelle simple et déclarative.

 En somme, Spring Data JPA offre une abstraction puissante qui accélère le développement de la couche
de persistance tout en assurant la fiabilité des opérations, permettant aux développeurs de se concentrer
sur la logique métier.

Définit le degré d'isolation d'une transaction par rapport aux autres.

❖ READ_COMMITTED : Empêche la lecture de données non validées (défaut sur PostgreSQL,
Oracle).

❖ REPEATABLE_READ : Empêche qu'une même lecture donne des résultats différents dans la
même transaction (défaut sur MySQL).

❖ Autres : READ_UNCOMMITTED, SERIALIZABLE

Isolation (isolation)

Propagation (propagation)

Exemple d'une transaction configurée pour un audit indépendant

@Transactional(propagation = Propagation.REQUIRES_NEW)
public void auditAction(String message) {

// ... Logique d'audit qui sera validée même si l'appelant échoue}

Conclusion

Chapitre 6. Sécurisation des Applications
avec Spring Security

60

 Spring Security est un framework puissant, flexible et hautement personnalisable destiné à assurer la
sécurité des applications Java. Il fournit un ensemble complet de mécanismes pour gérer l’authentification
(vérification de l’identité de l’utilisateur) et l’autorisation (contrôle des permissions et des accès).

Initialement développé comme Acegi Security, il est aujourd’hui devenu la solution standard pour
sécuriser les applications Spring.

 Contrairement à un pare-feu ou un système de surveillance réseau, Spring Security n’a pas pour rôle de
bloquer les attaques au niveau infrastructurel ; il agit au niveau applicatif en filtrant les requêtes HTTP, en
protégeant les méthodes sensibles, en gérant les sessions, l’encodage des mots de passe, et en offrant une
protection native contre des attaques courantes (CSRF, XSS, fixation de session…).

 Il peut s’intégrer à différents modes d’authentification : base de données, LDAP, authentification par
formulaires, OAuth2, SSO, JAAS, tokens JWT, etc., ce qui en fait un outil polyvalent et adapté aux
architectures modernes, y compris les microservices.

 La sécurité web constitue aujourd’hui un pilier fondamental du développement d’applications en ligne.
Avec l’évolution rapide des technologies et la montée en sophistication des cyberattaques, la protection des
données, la prévention des accès non autorisés et la sécurisation des échanges deviennent des exigences
incontournables. Les applications web modernes sont exposées à une multitude de risques : injections SQL,
attaques XSS, vols de session, CSRF, déni de service, phishing, qui peuvent compromettre la confidentialité,
l’intégrité et la disponibilité des systèmes.
 Comprendre les bases de la sécurité web, maîtriser les concepts d’authentification et d’autorisation, et
adopter des pratiques robustes (HTTPS, encodage, gestion des sessions, validation des entrées...) sont des
étapes essentielles pour renforcer la résilience d’une application.

 Dans ce contexte, les frameworks modernes offrent aux développeurs des mécanismes complets et
centralisés pour gérer la sécurité. C’est précisément le rôle de Spring Security, un composant majeur de
l’écosystème Spring, conçu pour répondre efficacement aux besoins de protection des applications Java
EE et, plus particulièrement, des applications Spring Boot.

6.1 Qu’est ce que Spring Security?

6.3 Fonctionnement général

6.2 Comment Spring Boot simplifie l’utilisation de Spring Security?
 Sans Spring Boot, la configuration de Spring Security nécessite plusieurs fichiers XML ou des classes
Java complexes pour définir les filtres, déclarer les beans, gérer les sessions, etc.

61

Spring Boot simplifie radicalement ce processus :

● Il auto-configure la chaîne de sécurité (Security Filter Chain).

● Il génère un utilisateur par défaut avec un mot de passe temporaire.

● Il protège automatiquement toutes les URLs de l’application.

● Il permet de personnaliser facilement la sécurité avec des annotations ou une simple classe Java.

 Avant d’entrer dans les détails techniques, il est essentiel de comprendre le fonctionnement global de
Spring Security dans une application Spring Boot. Lorsqu’un utilisateur envoie une requête HTTP, celle-ci
ne parvient pas directement aux contrôleurs. Elle traverse d’abord un ensemble de filtres spécialisés
organisés dans ce qu’on appelle la Security Filter Chain. Ces filtres analysent la requête, déterminent si
l’utilisateur est authentifié, vérifient ses permissions et appliquent plusieurs protections de sécurité (CSRF,
sessions, en-têtes sécurisés…).

 Spring Security agit donc comme une couche de défense placée avant la logique métier. Au lieu
d’éparpiller la sécurité dans toute l’application, le framework centralise la vérification des identités, des
rôles et des droits d’accès. Ce modèle est comparable à un checkpoint : aucune requête ne passe sans être
inspectée.
 L’intérêt de cette architecture réside dans son efficacité et sa modularité : chaque filtre est responsable
d’un aspect spécifique (authentification, autorisation, gestion des sessions…), ce qui permet au
développeur de personnaliser la sécurité sans complexifier le code métier.

Ce schéma illustre de manière simplifiée le processus complet d’authentification dans Spring Security.
Lorsque l’utilisateur saisit ses identifiants (1), ceux-ci sont d’abord interceptés par un Authentication

Figure 6-1. Spring Security Flow

62

 Spring Security s’appuie sur plusieurs concepts essentiels qui lui permettent d’assurer une sécurité fine
et modulaire :

 La sécurité fournie par Spring Security repose sur un mécanisme fondamental du monde Java : les
filtres Servlet. Dans une application classique, chaque requête HTTP envoyée par l’utilisateur transite
d’abord par le conteneur web, puis par les Servlets chargés de la traiter.

 Les filtres se situent précisément entre ces deux éléments : ils interceptent les requêtes et les réponses, et
peuvent effectuer des opérations avant et après le traitement du Servlet. Par exemple, un filtre peut afficher
un message avant l’exécution d’un Servlet, laisser passer la requête via filterChain.doFilter(), puis effectuer
un traitement final après la réponse. Ce fonctionnement permet d’ajouter proprement des comportements
transversaux comme la journalisation, la vérification d’accès ou la transformation des données.

Filter. Ce filtre transforme les informations fournies en un objet Authentication ,(2) puis les transmet à
l’AuthenticationManager (3). L’AuthenticationManager délègue ensuite la vérification à un ou
plusieurs AuthenticationProvider (4), responsables de comparer les informations reçues avec celles
stockées dans le système.

 L’AuthenticationProvider fait appel au UserDetailsService (5), qui récupère depuis la base de
données l’utilisateur correspondant, ainsi qu’au PasswordEncoder (6), qui vérifie que le mot de passe
saisi correspond au mot de passe haché enregistré. Si l’authentification est réussie, le provider renvoie un
objet Authentication complet contenant les rôles et autorisations de l’utilisateur (7–8). Cet objet est
alors stocké dans le SecurityContext (9), qui représente l’état de sécurité actif pour la requête et les
suivantes. Enfin, le filtre renvoie la main au navigateur ou au contrôleur approprié (10).

 Le schéma montre que Spring Security suit un processus structuré, modulable et entièrement basé sur
l’enchaînement de composants spécialisés, permettant une authentification sécurisée sans disperser la
logique dans l'application.

6.4 Concepts Fondamentaux de Spring Security

Security Filter Chain

. Servlet Request and Response Flow Figure 6-2

63

 Considérons un filtre simple, nommé FilterA, qui est mappé à toutes les URL (/*) et dont la
méthode doFilter() exécute la logique suivante :

1. Afficher un message "Starting Filter" (avant filterChain.doFilter()).
2. Laisser passer la requête au reste de l'application (via filterChain.doFilter()).
3. Afficher un message "Ending Filter" (après filterChain.doFilter() et le traitement du

Servlet).

 Le diagramme ci-dessous illustre le flux de traitement pour une requête HTTP GET /home interceptée
par ce filtre : Comme le montre l'exemple, lorsqu'une requête arrive, le conteneur l'intercepte et invoque
la méthode doFilter() du FilterA. L'exécution du filtre commence, affiche "Starting Filter", puis
filterChain.doFilter() est appelé. La requête est ensuite traitée par la ressource demandée
(home.jsp), qui renvoie la réponse. L'exécution revient au FilterA, qui affiche "Ending Filter"
avant que la réponse finale ne soit renvoyée au navigateur.

Spring Security exploite ce principe pour mettre en place sa propre chaîne de sécurité : la Security
. Celle-ci est composée d’un ensemble de filtres Java implémentant l’interface

, exécutés dans un ordre strict défini par le framework.javax.servlet.Filter
Filter Chain

Figure 6-3

Figure 6-4 .Order of Spring Security Filters

.Java Servlet Filter Chaining with RequestDispatcher

64

 L'Authentification est le processus qui consiste à identifier et vérifier qu'un utilisateur est bien celui qu'il
prétend être. Elle combine l'identification (fourniture d'un nom d'utilisateur) et la vérification (fourniture
d'un mot de passe ou d'une preuve similaire).

● Mécanismes de Vérification : Spring Security est conçu pour prendre en charge une grande
variété de méthodes, y compris la vérification des identifiants stockés en mémoire, dans une base
de données (JDBC), via des annuaires d'entreprise (LDAP), ou par des systèmes de connexion
unique (CAS, OAuth2, JWT).
● Sécurité des Mots de Passe : Pour assurer l'intégrité des données, Spring Security impose
l'utilisation d'un PasswordEncoder qui garantit que les mots de passe sont stockés sous forme
hachée (encodée) et jamais en clair.
● Gestion des Utilisateurs : Le framework utilise les interfaces clés UserDetails (représentant les
données d'un utilisateur, y compris ses rôles) et UserDetailsService (chargée de récupérer ces données
depuis n'importe quelle source, telle qu'une base de données ou un service externe) pour charger et
manipuler les utilisateurs lors du processus de connexion.

 Le premier filtre qui décide si une requête doit être sécurisée est
le SecurityContextPersistenceFilter, chargé de restaurer le contexte de sécurité de l’utilisateur (rôles,
informations d’authentification…). Ensuite, selon le type de requête, différents filtres s’activent.

 Chaque filtre joue un rôle bien précis dans la sécurisation de l’application. Certains, comme le
UsernamePasswordAuthenticationFilter, traitent l’authentification via formulaire ; d’autres, comme
le BasicAuthenticationFilter, gèrent les en-têtes HTTP. D’autres filtres contrôlent encore les
sessions, appliquent la protection CSRF, ou vérifient les permissions et les rôles associés à l’utilisateur.

 Lorsqu’une requête arrive, elle traverse successivement chaque filtre de la chaîne. Si l’utilisateur n’est
pas authentifié ou tente d’accéder à une ressource non autorisée, un des filtres peut bloquer la requête et
retourner une réponse adaptée (par exemple, une redirection vers la page de connexion ou une erreur
403). Si tout est conforme, la requête est transmise aux contrôleurs pour exécuter la logique métier. La
Security Filter Chain agit donc comme une barrière protectrice : elle examine chaque requête, valide
l’identité de l’utilisateur, contrôle ses droits, et applique diverses protections avant que l’application ne
commence réellement à traiter la requête.

 Avec Spring Boot, cette chaîne est configurée automatiquement, mais elle reste entièrement
personnalisable à travers la classe SecurityConfig. Le développeur peut choisir quels chemins laisser
publics, quels filtres activer ou désactiver, ou encore modifier la manière dont les utilisateurs sont
authentifiés. Grâce à ce système organisé et flexible, Spring Security peut analyser et sécuriser
efficacement chaque requête, qu’il s’agisse d’accéder à une page, d’effectuer un envoi de formulaire ou
d’interagir avec une API REST.

Authentification

● Post-Authentification : Après une vérification réussie, Spring Security prend en charge la gestion de

la session utilisateur de manière sécurisée (souvent via des cookies ou des tokens).

Autorisation
 L'Autorisation est le processus qui survient après l'authentification et qui détermine les actions et les
ressources auxquelles l'utilisateur authentifié est autorisé à accéder. C'est le mécanisme de contrôle
d'accès.

OAuth2 et JWT
 En plus des mécanismes classiques basés sur les sessions, Spring Security prend également en charge
des méthodes d’authentification modernes largement utilisées dans les architectures distribuées et les
applications mobiles : OAuth2 et JWT. OAuth2 est un protocole d’autorisation permettant à une
application d’accéder à des ressources au nom d’un utilisateur, sans jamais connaître son mot de passe. Ce
mécanisme est aujourd’hui la base des connexions via Google, Facebook ou GitHub, et repose sur
l’obtention d’un « access token » délivré par un serveur d’autorisation. Dans les applications plus légères
ou les API REST, JWT (JSON Web Token) s’impose comme un format de token compact, signé et auto-
contenu : il ne nécessite pas de session côté serveur, car toutes les informations (identité, rôles, date
d’expiration) sont inscrites et sécurisées directement dans le token. Spring Security intègre nativement ces
deux approches, permettant ainsi de construire des systèmes d’authentification adaptés aux microservices,
aux applications mobiles ou aux API stateless. Ce modèle offre des performances élevées et une
excellente scalabilité, tout en restant compatible avec les bonnes pratiques modernes de sécurité.

PasswordEncoders

65

 La gestion sécurisée des mots de passe est un pilier essentiel de toute application. Spring Security impose
l’utilisation d’un PasswordEncoder pour éviter le stockage des mots de passe en clair, une pratique
extrêmement dangereuse. En effet, si un attaquant accède à la base de données, il pourrait immédiatement
utiliser les mots de passe volés pour se connecter aux comptes des utilisateurs ou les tester sur d’autres sites.

Un PasswordEncoder applique un algorithme de hachage, parfois combiné à un sel cryptographique et à
un nombre d’itérations. Les méthodes les plus courantes sont :

● BCrypt : basé sur l’algorithme Blowfish, il inclut un salt automatique et est résistant aux attaques
par force brute même sur du matériel moderne.

● SCrypt : spécialement conçu pour être coûteux en mémoire, rendant inefficace l’usage de GPU
pour craquer les mots de passe.

● PBKDF2 : utilise un grand nombre d’itérations pour ralentir les attaques, souvent utilisé dans des
environnements industriels.

 Spring Security utilise BCrypt comme option par défaut, car il offre le meilleur compromis entre
sécurité, performance et compatibilité. De plus, son coût adaptable permet d’augmenter la résistance au
fur et à mesure que le matériel devient plus puissant.

66

 L'Autorisation peut être appliquée à différents niveaux de l'application :
(par exemple, autoriser l'accès à /admin/**

uniquement aux utilisateurs avec le rôle ADMIN).
(par exemple, empêcher l'exécution d'une méthode de service

critique si l'utilisateur n'a pas la permission adéquate).

 La sécurisation des ressources dans Spring Security s’effectue principalement à deux niveaux
complémentaires : au niveau des URLs et au niveau des méthodes. D’abord, la configuration HttpSecurity
permet de contrôler l’accès aux différentes routes HTTP de l’application. Grâce à cette configuration, il est
possible de définir quelles URLs sont publiques, lesquelles nécessitent une authentification, et lesquelles
sont réservées uniquement à certains rôles d’utilisateurs. Par exemple, on peut autoriser librement l’accès
aux pages de connexion ou d’inscription, tout en protégeant les pages

 L'objectif est d'assurer que l'utilisateur n'a accès qu'aux ressources (pages web, API, méthodes de
service) pour lesquelles il possède les droits.

Exemple concret : Dans une application de paie RH, l'Autorisation permet de s'assurer que seuls les
employés ayant le rôle HR peuvent accéder à la section de l'application gérant les salaires, tandis que la
consultation des bulletins de paie est autorisée à tous les employés (rôle EMPLOYEE).

● Modèles d'Accès : Spring Security implémente principalement le modèle Role-Based Access
Control (RBAC), où les permissions sont regroupées et attribuées à des Rôles définis (ex:
ADMIN, USER, HR). Cependant, d'autres modèles peuvent être mis en œuvre, comme la
vérification de permissions spécifiques.

Contrôle Granulaire :
○ Au niveau des URL/endpoints

○ Auniveaudesméthodes

Figure 6-5 .RBAC

●

Sécurisation des URLs et des Méthodes

67

d’administration. Cette approche garantit qu’une requête envoyée à l’application ne pourra atteindre un
contrôleur sensible que si l’utilisateur possède les permissions requises.

En complément, Spring Security propose la sécurisation au niveau du code grâce aux annotations telles
que @Secured, @PreAuthorize et @PostAuthorize. Ces annotations permettent de contrôler l’accès
directement sur les méthodes Java, offrant une sécurité plus fine et liée à la logique métier.

 Premièrement, l'annotation @Secured est la plus simple : elle est placée sur une méthode pour indiquer
quels rôles spécifiques (ex: ROLE_ADMIN) sont autorisés à l'exécuter. Si l'utilisateur n'a pas l'un de ces
rôles, l'exécution est bloquée. Deuxièmement, @PreAuthorize est l'outil le plus flexible car elle utilise
le langage d'expression SpEL (Spring Expression Language) pour évaluer des conditions complexes
avant l'appel de la méthode. Cela permet de vérifier non seulement le rôle de l'utilisateur, mais aussi des
conditions basées sur les données passées à la méthode (par exemple, s'assurer que l'utilisateur n'essaie de
modifier que son propre compte). Enfin, @PostAuthorize est une annotation rare qui évalue une
expression SpEL après l'exécution de la méthode, permettant de vérifier la validité ou l'accessibilité du
résultat retourné (par exemple, autoriser ou non la lecture d'un objet si l'utilisateur est son propriétaire).
L'utilisation de ces annotations assure un contrôle d'accès précis, directement intégré à la logique métier
de l'application.

L’association de la sécurisation des URLs via HttpSecurity et de la sécurisation méthodologique via
ces annotations assure une protection complète, cohérente et flexible de l’application.

 Au-delà des mécanismes d'authentification et d'autorisation, Spring Security renforce la posture de sécurité
d'une application en intégrant nativement des défenses automatiques contre les vulnérabilités web largement
reconnues, souvent via sa propre chaîne de filtres. Ceci est un avantage essentiel : ces protections sont
activées par défaut et ne demandent aucune implémentation manuelle de la part du développeur, ce qui
assure une base de sécurité robuste dès le démarrage de l'application.

 Une protection fondamentale est la gestion des jetons CSRF (Cross-Site Request Forgery). Pour
contrer cette attaque qui force l'utilisateur à exécuter des actions non désirées à son insu, Spring Security
fait en sorte que chaque formulaire ou requête importante reçoive un code secret unique (le jeton). Le
serveur vérifie que ce code secret est bien envoyé avec la requête. Si la requête provient d'un site tiers
malveillant, elle sera bloquée faute de ce jeton valide. Ce mécanisme est comparable à l'utilisation d'un
mot de passe unique à usage unique pour chaque transaction importante.

 Le framework met également en œuvre la prévention de la fixation de session (Session Fixation).
Cette défense empêche un attaquant d'imposer un identifiant de session connu à un utilisateur avant que
celui-ci ne se connecte. Spring Security résout ce problème par la rotation de la session : lorsqu'un
utilisateur se connecte avec succès, le framework invalide immédiatement l'ancienne session temporaire
et en crée une nouvelle avec un identifiant complètement différent et secret. Cela est similaire à changer la
serrure de sa chambre d'hôtel après avoir prouvé son identité.

Protection contre les attaques courantes

68

 Spring Security assure également une gestion avancée des sessions afin de protéger l’application contre
plusieurs attaques liées à l’usurpation ou au détournement des sessions utilisateur. D'abord, le framework
inclut une protection contre la session fixation, déjà décrite précédemment, en régénérant systématiquement
l’ID de session après authentification. Ensuite, il prend en charge l’expiration automatique des sessions,
permettant de définir une durée maximale d’inactivité. Lorsque la session expire, l’utilisateur doit se
reconnecter, renforçant ainsi la sécurité des zones sensibles.

 Un autre aspect important est la gestion de la concurrence des sessions (session concurrency control).
Spring Security peut empêcher un utilisateur d’ouvrir plusieurs sessions simultanées, ou limiter leur
nombre (par exemple, une seule session active par utilisateur). Cette fonctionnalité est essentielle dans des
contextes où le partage de comptes est interdit ou lorsque l’application manipule des données sensibles.

 Grâce à ces mécanismes, la gestion des sessions dans Spring Security apporte une couche
supplémentaire de protection tout en permettant de configurer des comportements adaptés selon les
besoins de l’application.

 L’un des principaux avantages de Spring Boot est sa capacité à simplifier la configuration de Spring
Security grâce à son mécanisme d’auto-configuration. En effet, l’ajout de la dépendance spring-boot-
starter-security suffit pour activer immédiatement une sécurité de base dans l’application. Dès le premier
démarrage, Spring Boot génère automatiquement un utilisateur par défaut, généralement nommé user,
accompagné d’un mot de passe temporaire affiché dans la console. Cette configuration préétablie protège
également l’ensemble des endpoints de l’application : toutes les URLs nécessitent une authentification, et
un formulaire de connexion standard est mis à disposition sans qu’aucun code supplémentaire ne soit
nécessaire.

 Enfin, le composant de sécurité HTTP assure la sécurisation des en-têtes de réponse. Ces petites
informations envoyées au navigateur sont configurées pour se défendre contre d'autres attaques :

● Contre le XSS (Cross-Site Scripting), l'en-tête Content-Security-Policy (CSP) agit comme
un ensemble de règles strictes, ordonnant au navigateur de n'autoriser le chargement de scripts
que depuis des sources fiables (le domaine de l'application).
● Contre le Clickjacking (qui piège l'utilisateur en plaçant la page dans un cadre transparent),
l'en-tête X-Frame-Options (ou des directives CSP) interdit l'affichage de la page dans une iframe
sur un site étranger.
● Pour forcer le HTTPS, l'en-tête Strict-Transport-Security (HSTS) demande au navigateur
de se souvenir de toujours n'utiliser que le protocole sécurisé pour toutes les communications
futures avec le site.

 L'ensemble de ces mesures renforce considérablement l'intégrité et la confidentialité des échanges de
données.

Gestion des sessions

6.5 Intégration avec Spring Boot

69

 Cette configuration illustre les principaux mécanismes de Spring Security dans une application Spring
Boot, comment permettre l’accès libre à certaines pages, protéger les pages administratives, personnaliser

 Une fois cette configuration automatique en place, le développeur peut personnaliser la sécurité selon les
besoins du projet. Cela se fait généralement en créant une classe de configuration dédiée (SecurityConfig),
où il devient possible de définir les règles d’accès aux ressources, de créer des utilisateurs personnalisés,
d’intégrer une base de données pour la gestion des comptes, ou encore de modifier le comportement du
formulaire de connexion. Grâce à cette approche, Spring Boot combine simplicité et flexibilité, permettant
aux débutants de démarrer rapidement tout en offrant aux développeurs avancés un haut niveau de contrôle
sur la sécurité de leur application.

La création de la classe SecurityConfig est annotée avec @Configuration et
@EnableWebSecurity, dans laquelle on redéfinit le bean SecurityFilterChain.
Cette classe permet de définir quelles pages sont publiques, quelles pages nécessitent une
authentification, quels rôles sont autorisés à accéder à certains endpoints, ou encore quel formulaire de
connexion utiliser. Voici un exemple simple de configuration :

@Configuration
@EnableWebSecurity
publicclassSecurityConfig {

@Bean
publicSecurityFilterChain securityFilterChain(HttpSecurity http) throws

Exception{
http

.authorizeHttpRequests(auth -> auth
.requestMatchers("/login", "/register").permitAll()
.requestMatchers("/admin/**").hasRole("ADMIN")
.anyRequest().authenticated()

)
.formLogin(form -> form

.loginPage("/login")

.defaultSuccessUrl("/home", true)
)
.logout(logout -> logout

.logoutUrl("/logout")

.logoutSuccessUrl("/login?logout")
);

returnhttp.build();
}
@Bean
publicPasswordEncoder passwordEncoder() {

returnnew BCryptPasswordEncoder();
}

}

Code 6-1 .SecurityConfig

70

 Pour garantir un niveau de sécurité élevé dans une application Spring Boot, il est essentiel d’adopter un
ensemble de bonnes pratiques complémentaires aux mécanismes fournis par Spring Security. Tout d’abord,
les mots de passe ne doivent jamais être stockés en clair : ils doivent toujours être hachés à l’aide d’un
algorithme robuste comme BCrypt. L’utilisation systématique du protocole HTTPS est également
indispensable afin de protéger les données en transit contre les interceptions et les attaques de type « Man-
in-the-Middle ». Il est recommandé d’appliquer le principe du moindre privilège en attribuant aux
utilisateurs uniquement les rôles nécessaires à leurs actions, tout en évitant de coder les rôles ou permissions
directement dans le code source. Pour les API REST, il est important de désactiver la protection CSRF, tout
en adoptant une authentification stateless basée sur des tokens (JWT). Enfin, la journalisation des tentatives
d’accès, la surveillance des anomalies, ainsi que la mise en place d’une expiration de session et de limites
sur les connexions simultanées permettent de renforcer la sécurité globale de l'application.

le formulaire d’authentification, comment Spring Security centralise la gestion des rôles, des pages
protégées et du processus d’authentification grâce à une approche simple et modulable.

 Le bean SecurityFilterChain permet de définir les règles d’accès aux différentes URL : dans cet
exemple, les pages /login et /register sont publiques, tandis que toutes les autres requêtes exigent une
authentification. De plus, les routes commençant par /admin/** sont réservées aux utilisateurs possédant
le rôle ADMIN. La section formLogin() permet de personnaliser le formulaire d'authentification, en
indiquant la page de connexion et la destination après un login réussi. De même, logout() configure
l’URL de déconnexion ainsi que la page affichée après la sortie. Enfin, le bean PasswordEncoder utilise
l’algorithme BCrypt pour hacher les mots de passe, garantissant un stockage sécurisé.

6.6 Bonnes pratiques

Chapitre 7. Tests et Qualité du Code
 Les tests jouent un rôle essentiel dans le développement logiciel, car ils permettent de vérifier la justesse et
la fiabilité des fonctionnalités. Dans le monde Java, JUnit et TestNG comptent parmi les frameworks de test
les plus utilisés. Une pratique répandue est le Test Driven Development (TDD), qui consiste à écrire d’abord
les tests puis à développer uniquement le code nécessaire pour les faire réussir. On distingue généralement
plusieurs types de tests : les tests unitaires, qui évaluent un composant isolé, et les tests d’intégration, qui
valident le comportement d’un ensemble de composants. Lors de tests d’intégration, il est souvent nécessaire
de simuler des dépendances externes comme des appels à des services web tiers ou des interactions avec la
base de données ; pour cela, des bibliothèques comme Mockito, PowerMock ou jMock permettent de créer
des objets simulés. L’injection de dépendances, principe fondamental de Spring, facilite grandement
l’écriture de code testable puisqu’elle permet d’injecter des implémentations factices pendant les tests et des
implémentations réelles en production. Spring, en tant que conteneur IoC, propose d’ailleurs une excellente
prise en charge de différents scénarios de test. Dans le contexte de Spring Boot, il existe des outils
spécialement conçus pour tester des parties précises de l’application : par exemple, @WebMvcTest pour
tester les contrôleurs web, @DataJpaTest pour tester les repositories JPA, ou encore @JdbcTest pour
vérifier les interactions via JDBC. Ce chapitre montre ainsi comment tester efficacement les composants
d’une application Spring Boot en isolant chaque couche selon son rôle spécifique.

71

 L’une des principales raisons de la popularité du framework Spring est son excellent support pour les
tests. Spring fournit SpringRunner, un exécuteur JUnit personnalisé qui permet de charger
automatiquement le Spring ApplicationContext grâce à l’annotation
@ContextConfiguration(classes=AppConfig.class).
Un test Spring typique ressemble à ce qui suit :

Listing 7-1. Test JUnit Spring typique

7.1 Tests des Applications Spring Boot

@RunWith(SpringRunner.class)
@ContextConfiguration(classes=AppConfig.class)
publicclass UserServiceTests
{

@Autowired
UserService userService;

@Test
public void should_load_all_users()
{

List<User> users = userService.getAllUsers();
assertNotNull(users);
assertEquals(10, users.size());

}

}

● Mockito : framework de mock Java
● Hamcrest : bibliothèque de matchers pour les assertions
AssertJ : bibliothèque d’assertions fluides

72

interne pourcharger l’

Spring Boot propose alors l’annotation

Boot restent accessibles pendant les tests.

, qui utilise SpringApplication en
, garantissant ainsi que toutes les fonctionnalités Spring

 Une application Spring Boot n’est finalement rien d’autre qu’une application Spring, donc vous pouvez
utiliser toutes les fonctionnalités de test de Spring dans une application Spring Boot. Cependant, certaines
fonctionnalités propres à Spring Boot comme le chargement automatique des propriétés externes ou la
configuration du logging ne sont disponibles que si l’ApplicationContext est créé avec la classe
SpringApplication, utilisée dans la classe d’entrée de l’application :

 Avec @SpringBootTest, il est possible de fournir des classes de configuration Spring, des fichiers XML
ou d’autres types de configuration, mais dans une application Spring Boot, on utilise généralement la classe
d’entrée principale.

Le starter spring-boot-starter-test inclut JUnit, Spring Test et Spring Boot Test, ainsi que
plusieurs bibliothèques essentielles pour les tests, notamment :

●

@SpringBootTest
ApplicationContext

@RunWith(SpringRunner.class)
@SpringBootTest
publicclass SpringbootTestingDemoApplicationTests
{

@Autowired
UserService userService;

@Test
public void should_load_all_users()
{

...

...
}

@SpringBootApplication
publicclass SpringbootTestingDemoApplication
{

public static void main(String[] args)
{

SpringApplication.run(SpringbootTestingDemoApplication.class, args);
}

}

}

Listing 7-2. Test JUnit typique avec Spring Boot

http://site.mockito.org/
http://hamcrest.org/JavaHamcrest/
http://hamcrest.org/JavaHamcrest/
https://joel-costigliola.github.io/%20assertj/

JSONassert●
● JsonPath

73

 : assertions sur des données JSON
: équivalent XPath pour JSON

 Vous pouvez utiliser @Mock pour créer un objet mock et @InjectMocks
automatiquement ces mocks dans les dépendances de la classe testée.

pour injecter

 Lors des tests unitaires, il est souvent nécessaire de simuler les appels à des services externes, comme les
accès à la base de données ou les appels à des web services. Pour cela, deux approches sont possibles :
créer manuellement des implémentations mock utilisées uniquement dans les tests, ou utiliser une
bibliothèque de mocking pour générer automatiquement des objets simulés. Créer des mocks
manuellement consiste à écrire soi-même des classes qui imitent le comportement des dépendances
réelles. Cette approche fonctionne, mais elle devient rapidement lourde et fastidieuse dès que les cas à
couvrir se multiplient.

 Pour éviter cette complexité, il est beaucoup plus pratique d’utiliser une bibliothèque de mocking. L’une
des plus populaires en Java est Mockito, qui s’intègre parfaitement avec JUnit. Mockito permet de créer
des objets mock sans devoir écrire de classes supplémentaires, et de définir précisément les
comportements attendus.

 Par exemple, si votre service appelle un web service externe et que vous devez tester la logique de retry
en cas d’erreur, il serait difficile de provoquer réellement une panne de communication. Avec Mockito,
vous pouvez facilement simuler une exception, forcer l’échec de l’appel, et vérifier que votre code tente
bien trois essais avant d’abandonner. De même, supposez que vous importez des données utilisateurs
depuis un service tiers comme dans l’exemple du Listing 7-3.

7.2 Tests avec des Implémentations Mock

Listing 7-3. Users Importer.java

@Service
public class UsersImporter
{
public List<User> importUsers() throws UserImportServiceCommunicationFailure
{
List<User> users = new ArrayList<>();
//get users by invoking some web service
//if any exception occurs throw UserImportServiceCommunicationFailure
//dummy data users.add(new User());
users.add(new User());
users.add(new User());
return users;
}
}

https://github.com/%20skyscreamer/JSONassert
https://github.com/json-path/JsonPath.

74

 Vous pouvez également utiliser @RunWith(MockitoJUnitRunner.class) pour initialiser les objets
mock, ou déclencher cette initialisation manuellement en appelant MockitoAnnotations.initMocks(this)
dans une méthode @Before de JUnit.

 Ici, vous simulez une condition d’échec lors de l’importation des utilisateurs via le service web grâce à
l’instruction suivante : given(usersImporter.importUsers()).willThrow(new
UserImportServiceCommunicationFailure());

 Ainsi, lorsque vous appelez userService.importUsers() et que l’objet mock usersImporter déclenche l’exception
UserImportServiceCommunicationFailure, la méthode sera réessayée trois fois avant d’abandonner.

 Spring Boot fournit également l’annotation @MockBean, qui permet de définir un nouveau mock Mockito en
tant que bean Spring, ou de remplacer un bean Spring existant par un mock, puis de l’injecter automatiquement
dans les composants qui en dépendent.

 Les mock beans sont automatiquement réinitialisés après chaque méthode de test.

 Voir le Listing 7-5.

Listing 7-4. Tests utilisant des objets mock Mockito
import static org.assertj.core.api.Assertions.assertThat;
import static org.mockito.BDDMockito.*;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.mockito.InjectMocks;
import org.mockito.Mock;
import org.mockito.junit.MockitoJUnitRunner;
import com.apress.demo.exceptions.UserImportServiceCommunicationFailure;
import com.apress.demo.model.UsersImportResponse;
 @RunWith(MockitoJUnitRunner.class) public class UsersImportServiceMockitoTest
{
@Mock
private UsersImporter usersImporter;
@InjectMocks
private UsersImportService usersImportService;
@Test
public void should_retry_3times_when_UserImportServiceCommunicationFailure_occured()
{
given(usersImporter.importUsers()).willThrow(new UserImportServiceCommunication
Failure());
UsersImportResponse response = usersImportService.importUsers();
 assertThat(response.getRetryCount()).isEqualTo(3);
 assertThat(response.getStatus()).isEqualTo("FAILURE");

}
}

Listing 7-5. Tests utilisant le mock de Spring Boot

UsersImportService

@MockBean

 UsersImporter

import static org.assertj.core.api.Assertions.assertThat;
import static org.mockito.BDDMockito.*;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.boot.test.mock.mockito.MockBean;
import org.springframework.test.context.junit4.SpringRunner;
import com.apress.demo.exceptions.UserImportServiceCommunicationFailure;
import com.apress.demo.model.UsersImportResponse;
@RunWith(SpringRunner.class)
@SpringBootTest
public class UsersImportServiceMockitoTest
{
@MockBean
private UsersImporter usersImporter;
@Autowired
private UsersImportService usersImportService;
@Test
public void should_retry_3times_when_UserImportServiceCommunicationFailure_occured()
{
given(usersImporter.importUsers()).willThrow(new UserImportServiceCommunication
Failure());
UsersImportResponse response = usersImportService.importUsers();
 assertThat(response.getRetryCount()).isEqualTo(3);
 assertThat(response.getStatus()).isEqualTo("FAILURE");
}
}

75

Ici,SpringBootvacréer un objet mock pour
.

et l' injecter dans le bean

 Lors du test des différents composants de l’application, vous pouvez souhaiter charger uniquement un
sous-ensemble de beans du Spring ApplicationContext, ceux qui sont liés au sujet testé (SUT). Par
exemple, lorsque vous testez un contrôleur Spring MVC, vous pouvez vouloir charger uniquement les
composants de la couche MVC (couche présentation) et fournir des beans simulés (mock) de la couche
service en tant que dépendances. Spring Boot fournit des annotations comme @WebMvcTest,
@DataJpaTest, @DataMongoTest, @JdbcTest et @JsonTest pour tester des tranches spécifiques
de l’application.

7.3 Tester des tranches de l’application à l’aide des annotations @*Test

Tester les Contrôleurs Spring MVC Avec @WebMvcTest

76

montre comment écrire un test pour en utilisant

 Spring Boot fournit l’annotation @WebMvcTest, qui va auto-configurer les composants de l’infrastructure
Spring MVC et charger uniquement les éléments suivants : @Controller, @ControllerAdvice,
@JsonComponent, Filter, WebMvcConfigurer, et HandlerMethodArgumentResolver.

 Les autres beans Spring (annotés avec @Component, @Service, @Repository, etc.) ne seront pas scannés
lorsque vous utilisez cette annotation.

 Vous allez maintenant voir comment créer un contrôleur qui ajoute des données au modèle et rend une vue
Thymeleaf. Voir Listing 15-14.

 TodoController.java

TodoController @WebMvcTest.

Listing 7-6.

Listing 7-7

Listing 7-7.

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;
import com.apress.demo.repositories.TodoRepository;
 @Controller
public class TodoController
{
@Autowired
TodoRepository todoRepository;
@GetMapping("/todolist")
public String showTodos(Model model)
{
model.addAttribute("todos", todoRepository.findAll());
return "todos";
}
}

import static org.mockito.BDDMockito.*;
import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;
import static org.hamcrest.Matchers.*; import java.util.Arrays; import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTest;

Tester un contrôleur Spring MVC avec MockMvc

import org.springframework.boot.test.mock.mockito.MockBean;
import org.springframework.http.MediaType;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.test.web.servlet.MockMvc;
import com.apress.demo.entities.Todo;
import com.apress.demo.repositories.TodoRepository;
 @RunWith(SpringRunner.class)
@WebMvcTest(controllers= TodoController.class)
public class TodoControllerTests
{
@Autowired
private MockMvc mvc;
@MockBean
private TodoRepository todoRepository;
@Test
public void testShowAllTodos() throws Exception
{
Todo todo1 = new Todo(1, "Todo1",false);
Todo todo2 = new Todo(2, "Todo2",true);
 given(this.todoRepository.findAll()).willReturn(Arrays.asList(todo1, todo2));
 this.mvc.perform(get("/todolist")
.accept(MediaType.TEXT_HTML))
.andExpect(status().isOk())
.andExpect(view().name("todos"))
.andExpect(model().attribute("todos", hasSize(2)))
;
verify(todoRepository, times(1)).findAll();
}
}

77

 Vous avez annoté le test avec @WebMvcTest(controllers = TodoController.class) en spécifiant
explicitement quel contrôleur vous testez. Comme @WebMvcTest ne charge pas les autres beans Spring
classiques et que TodoController dépend de TodoRepository, vous avez fourni un bean mock en utilisant
l’annotation @MockBean.L’annotation @WebMvcTest configure automatiquement MockMvc, qui peut être
utilisé pour tester les contrôleurs sans démarrer un véritable conteneur servlet.

 Dans cette méthode de test, vous définissez le comportement attendu de todoRepository.findAll(), afin qu’il
renvoie une liste de deux objets Todo. Ensuite, vous effectuez une requête GET vers “/todolist” et vous
vérifiez plusieurs éléments dans la réponse.

Tester les Composants de la Couche de Persistance Avec
@JdbcTest

 et @DataJpaTest

78

 Vous pouvez souhaiter tester les composants de la couche de persistance de votre application, ce qui ne
nécessite pas le chargement de nombreux autres composants comme les contrôleurs, la configuration de
sécurité, etc. Spring Boot fournit les annotations @DataJpaTest et @JdbcTest pour tester les beans Spring
qui interagissent avec des bases de données relationnelles.L’annotation @DataJpaTest permet de tester les
composants de la couche persistance en auto-configurant des bases de données embarquées en mémoire et
en scannant les classes annotées @Entity ainsi que les repositories Spring Data JPA. Cette annotation ne
charge pas les autres beans Spring (@Component, @Controller, @Service, etc.) dans
le ApplicationContext.

Vous allez maintenant voir comment tester les repositories Spring Data JPA dans une application Spring
Boot. Pour cela, créez un projet Maven Spring Boot avec les starters Data-JPA et Test.

 Ensuite,vous créez une entité JPA appelée User, représentant les utilisateurs dans la base de données,
ainsi qu’un repository Spring Data JPA appelé UserRepository pour gérer les opérations CRUD sur
cette entité. L’entité contient des champs tels que l’identifiant, le nom, l’email et le mot de passe, avec des
contraintes appropriées (unicité, non nullité, etc.). Pour initialiser la table USERS de la base de données,
vous pouvez ajouter des données statiques via un fichier data.sql situé dans src/main/resources,
ce qui vous permet de disposer immédiatement d’un jeu de données de test lors de l’exécution de
l’application.

Vous pouvez maintenant tester UserRepository en utilisant l’annotation @DataJpaTest, comme
illustré dans Listing 7-8 :

Listing 7-8. Tester les Spring Data JPA Repositories avec @DataJpaTest

@RunWith(SpringRunner.class)
@DataJpaTest
publicclass UserRepositoryTests
{

@Autowired
private UserRepository userRepository;

@Test
public void testFindByEmail() {

User user = userRepository.findByEmail("admin@gmail.com");
assertNotNull(user);
assertEquals(1, user.getId());
assertEquals("admin", user.getName());

}

 :

}

@RunWith(SpringRunner.class)
@JdbcTest

publicclass JdbcUserRepository
{

private JdbcTemplate jdbcTemplate;

public JdbcUserRepository(JdbcTemplate jdbcTemplate) {
this.jdbcTemplate = jdbcTemplate;

}

public List<User> findAll() {
....
....

}

79

Listing 7-10 montre comment tester les méthodes de

Listing 7-10. Tester les opérations JDBC avec

 en utilisant

 Lorsque vous exécutez UserRepositoryTests, Spring Boot auto-configurera automatiquement une base de
données embarquée en mémoire H2 (si le driver H2 est présent dans le classpath) et exécutera les tests. Si
vous souhaitez effectuer les tests sur la base de données réelle configurée, vous pouvez annoter le
test avec@AutoConfigureTestDatabase(replace=Replace.NONE).

 Cela utilisera la DataSource enregistrée au lieu d’une datasource en mémoire. Vous pouvez également
utiliser Replace.AUTO_CONFIGURED pour remplacer la DataSource auto-configurée, ou Replace.ANY
(valeur par défaut) pour remplacer toute datasource bean auto-configurée ou définie explicitement.Les
tests avec @DataJpaTest sont transactionnels et les modifications sont annulées à la fin de chaque test
par défaut.Vouspouvez désactiver ce comportement de rollback pour un test spécifique ou pour une
classe de test entière en utilisant @Transactional(propagation = Propagation.NOT_SUPPORTED).

 Demanière similaire à l’annotation @DataJpaTest, vous pouvez utiliser @JdbcTest pour tester des
méthodes liées au JDBC en utilisant JdbcTemplate. L’annotation @JdbcTest auto-configure également
des bases de données embarquées en mémoire et exécute les tests de manière transactionnelle.

Vous allez maintenant créer un JdbcUserRepository pour effectuer des opérations sur la base de
données en utilisant JdbcTemplate, comme montré dans Listing 7-9 :

JdbcUserRepository.java

JdbcUserRepository

@JdbcTest

@JdbcTest

Listing 7-9.

}

publicclass JdbcUserRepositoryTests
{

@Autowired
private JdbcTemplate jdbcTemplate;

private JdbcUserRepository userRepository;

@Before
public void init()
{

userRepository = new JdbcUserRepository(jdbcTemplate);
jdbcTemplate.execute("create table people(id int, name varchar(100))");
jdbcTemplate.execute("insert into people(id, name) values(1, 'John')");
jdbcTemplate.execute("insert into people(id, name) values(2, 'Remo')");
jdbcTemplate.execute("insert into people(id, name) values(3, 'Dale')");

}

@Test
public void testFindAllUsers() throws Exception
{

List<User> users = userRepository.findAll();
assertThat(users.size()).isEqualTo(3);

}

}

80

manuellement
auto-configuré.

Comme @JdbcTest ne charge aucun bean Spring régulier annoté @Component, cet exemple crée
l’instance de JdbcUserRepository en utilisant le bean JdbcTemplate

De manière similaire à et , Spring Boot fournit d’autres annotations pour
tester des parties spécifiques de l’application, comme @DataMongoTest, @DataNeo4jTest,
@JooqTest, @JsonTest et @DataLdapTest.

@DataJpaTest @JdbcTest

Annexes
AnnexeA : Annotations Spring les plus courantes

Annotation Description Utilisation

@Bean

107

@Controller

@Service

@Repository

@Component

@RestController

@ComponentScan

@Configuration

@Value("${prop}")

@Autowired

@Qualifier("name")

@SpringBootApplication

@GetMapping("/path")

@PostMapping("/path")

@PutMapping("/path")

@DeleteMapping("/path")

@EnableAutoConfiguration

Indique qu’une classe est un contrôleur MVC

Combinaison de @Controller et
@ResponseBody

Indique une classe de logique métier

Indique une classe d’accès aux données
(DAO)

Composant générique Spring

Injection automatique de dépendance

 Précise quel bean utiliser quand il y en a
plusieurs du même type

Injecte une valeur depuis le fichier
application.properties

Déclare manuellement un bean dans une
classe @Configuration
Active l’auto-configuration, le scan de
composants, la config Spring Boot

Laisse Spring Boot configurer les beans
automatiquement

Indique à Spring quelles packages scanner

Indique que la classe contient des beans
Java-based

Mappe une requête HTTP GET

Mappe une requête HTTP POST

Mappe une requête HTTP PUT

Mappe une requête HTTP DELETE

Classe principale

Contrôleur REST

Formulaires, création

Mise à jour

Suppression

Variables configurables

Configurations avancées

Couche Web (retourne une vue)

API REST (retourne JSON/XML)

Inclus dans SpringBootApplication

Fichiers de configuration

Inclus dans @SpringBootApplication

Couche Service Couche d'accès BD,

gère les
exceptions
Classe à injecter (si aucune autre
annotation spécialisée ne correspond)

Constructeur, attribut, setter

Injection ciblée

108

@RequestParam

@PathVariable

@RequestBody

@ResponseBody

@EnableTransactionManagement

@Entity

@Table(name="...")

@Id

@GeneratedValue

 @Column

@OneToMany / @ManyToOne /
@ManyToMany

@JoinColumn

@Valid

@NotNull

@NotBlank

@Email

@Min, @Max

@Size(min, max)

@EnableWebSecurity

@Configuration

@PreAuthorize("hasRole('ADMIN')")

@Secured("ROLE_ADMIN")

@Transactional

Colonne de jointure

Valide un objet reçu

Champ obligatoire

Texte non vide

Vérification email

Contraintes numériques

Taille minimale/maximale

Active Spring Security

Définit une classe de sécurité

Autorisation au niveau des méthodes

Autorisation basique

Indique que la méthode (ou la classe) utilise

une transaction

Active la gestion des transactions

Paramètres dans l’URL ?name=value

Paramètre dans le chemin /users/{id}

Récupère le JSON envoyé par le client

Indique que la méthode retourne directement
des données

Représente une table dans la BD

Spécifie le nom de la table

Clé primaire

Auto-incrémentation

Propriétés d’une colonne

Relations entre tables

Relations JPA

Contrôleurs

Validation form

String

Formulaires

Champs int/float

String ou listes

Classe modèle

Mapping BD

Identifiant

PK

Taille, nullability, nom

Mapping relationnel

Couche service / DAO

Fichier de configuration

Requêtes GET

REST API

POST, PUT

Automatique avec @RestController

Annexe B : Bibliographie et références

109

https://www.geeksforgeeks.org/advance-java/spring-boot/

https://www.geeksforgeeks.org/springboot/spring-boot-rest-example/

https://docs.spring.io/spring-framework/reference/

https://docs.spring.io/spring-framework/reference/web/webmvc.html

https://gayerie.dev/docs/spring/spring/spring_mvc_intro.html

https://cloud.tencent.com/developer/article/2571626

https://openclassrooms.com/fr/courses/6900101-creez-une-application-java-avec-spring-boot

https://www.sfeir.dev/back/comprendre-les-annotations-dans-spring-boot/

Spring Start Here: Learn what You Need and Learn it Well par Laurentiu Spilca

Spring developing java applications for the enterprise par Ravi Kant Soni, Amuthan Ganeshan Rajesh RV

Java Spring Boot From Beginner to Pro A Comprehensive Guide to Modern Java Development 3 Books in 1
par Darren Green

Beginning Spring Boot 2 Applications and Microservices with the Spring Framework par K. Siva Prasad
Reddy

https://www.geeksforgeeks.org/advance-java/spring-boot/
https://www.geeksforgeeks.org/springboot/spring-boot-rest-example/
https://docs.spring.io/spring-framework/reference/
https://docs.spring.io/spring-framework/reference/web/webmvc.html
https://gayerie.dev/docs/spring/spring/spring_mvc_intro.html
https://cloud.tencent.com/developer/article/2571626
https://openclassrooms.com/fr/courses/6900101-creez-une-application-java-avec-spring-boot
https://www.sfeir.dev/back/comprendre-les-annotations-dans-spring-boot/

